Covariant-tensor method for quantum groups and applications I. SU(2) ${ }_{\mathrm{q}}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 264595
(http://iopscience.iop.org/0305-4470/26/18/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:37

Please note that terms and conditions apply.

Covariant-tensor method for quantum groups and applications I: $\mathbf{S U (2)})_{q}$

S Meljanac \dagger and M Mileković \ddagger
\dagger Rudjer Bošković Institute, Bijenǐkka c.54, 41001 Zagreb, Croatia
\ddagger Prirodoslovno-Matematički fakultet, Department of Theoretical Physics, Bijenička c. 32, 41000 Zagreb, Croatia

Received 7 December 1992, in final form 15 February 1993

Abstract

A covariant-tensor method for $\mathrm{SU}(2)_{q}$ is described. This tensor method is used to calculate q-deformed Clebsch-Gordan coefficients. The connection with covariant oscillators and irreducible tensor operators is established. This approach can be extended to other quantum groups.

1. Introduction

In recent years there has been considerable interest in q-deformations of Lie algebras (quantum groups) [1] and their applications in physics [2]. The main goal of these applications is a generalization of the concept of symmetry. The properties of quantum groups are similar to those of classical Lie groups with q not being a roct of unity. However, it is still not clear to what extent the familiar tensor methods, used in the representation theory of Lie algebras, are applicable to the case of q-deformations.

Different types of tensor calculus for $\mathrm{SU}(2)_{q}$ were proposed and applied in references [3-7]. However, no simple covariant-tensor calculus for $\mathrm{SU}(n)_{q}$ was presented. In this paper we propose a simple covariant-tensor method for $\mathrm{SU}(2)_{q}$ which can be extended to the general $\mathrm{SU}(n)_{q}$. Details for $\mathrm{SU}(n)_{q}$ and especially for $\mathrm{SU}(3)_{q}$ will be published separately.

The plan of the paper is the following. In section 2 we recall the basics of the $\mathrm{SU}(2)_{q}$ algebra, its fundamental representation and invariants. In section 3 we construct the general $\mathrm{SU}(2)_{g}$-covariant tensors and invariants. In section 4 we apply this tensor method to calculate q-deformed Clebsch-Gordan coefficients and in section 5 we demonstrate their symmetries. We point out that this method is simpler than that used in previous calculations [5,8] and can be generalized to other quantum groups. Finally, in section 6 we connect covariant tensors with covariant q-oscillators and construct unit irreducible tensor operators.

2. $\mathrm{SU}(2)_{q}$-algebra, its fundamental representation and invariants

Let us recall that three generators of $S U(2)_{q}$ obey the following commutation relations [1] (we take q real)

$$
\begin{equation*}
\left[J^{0}, J^{ \pm}\right]= \pm J^{ \pm} \tag{2.1}
\end{equation*}
$$

$$
\left[J^{+}, J^{-}\right]=\left[2 J^{0}\right]_{q}=\frac{q^{2 J^{0}}-q^{-2 J^{0}}}{q-q^{-1}} .
$$

The coproduct Δ; $\mathrm{SU}(2)_{q} \rightarrow \mathrm{SU}(2)_{q} \otimes \mathrm{SU}(2)_{q}$ is defined as

$$
\begin{align*}
& \Delta\left(J^{ \pm}\right)=J^{ \pm} \otimes q^{J^{0}}+q^{-J^{0}} \otimes J^{ \pm} \\
& \Delta\left(J^{0}\right)=J^{0} \otimes 1+1 \otimes J^{0} \tag{2.2}
\end{align*}
$$

Let V_{2} be a two-dimensional space spanned by the basis $\left|e_{a}\right\rangle, a=1,2$, and $|v\rangle=$ $\Sigma_{a}\left|e_{a}\right\rangle v_{a} \in V_{2}$. The $\mathrm{SU}(2)_{q}$ generators $J^{k}(k= \pm, 0)$ act as

$$
\begin{align*}
J^{k}\left|e_{a}\right\rangle & =\sum_{b}\left(J^{k}\right)_{b a}\left|e_{b}\right\rangle \\
J^{k}|v\rangle & =\sum_{a, b}\left(J^{k}\right)_{b a}\left|e_{b}\right\rangle v_{a} \\
& =\sum_{b}\left|e_{b}\right\rangle\left(J^{k} V\right)_{b} \\
& =\sum_{b}\left|e_{b}\right\rangle v_{b}^{\prime} . \tag{2.3}
\end{align*}
$$

In the fundamental representation of $S U(2)_{q}$ the generator J^{k} s are ordinary 2×2 Pauli matrices.

Let $\left(V_{2}\right)^{*}$ be a dual space with the basis $\left\langle e_{a}\right|=\left(\left|e_{a}\right\rangle\right)^{+}$and $\langle v|=(|v\rangle)^{+}=\Sigma_{a} v_{a}^{*}\left\langle e_{a}\right|$. The dual basis is orthonormal, i.e. $\left\langle e_{a} \mid e_{b}\right\rangle=\delta_{a b}$. We note that the components of the vector $|v\rangle, v_{a}$, (or v_{a}^{*} of $\langle v|$) are not defined as real or complex numbers: Their algebraic properties follow from $\mathrm{SU}(2)_{q}$-invariance requirements. Here we identify (for the spin $j=\frac{1}{2}$)

$$
\begin{align*}
& \left|e_{a}\right\rangle=\left|\frac{1}{2}, m_{a}\right\rangle \tag{2.4}\\
& \left\langle e_{a}\right|=\left\langle\frac{1}{2}, m_{a}\right|
\end{align*} \quad m_{a}= \pm \frac{1}{2}
$$

and the matrix elements of the generators J^{k} are

$$
\begin{align*}
& \left\langle e_{a}\right| J^{0}\left|e_{a}\right\rangle=m_{a} \\
& \left\langle e_{1}\right| J^{+}\left|e_{2}\right\rangle=\left\langle e_{2}\right| J^{-}\left|e_{1}\right\rangle=1 . \tag{2.5}
\end{align*}
$$

We define a scalar product as $\langle u \mid v\rangle=\Sigma_{a} u_{a}^{*} v_{a}$ and the norm as $\langle v \mid v\rangle=\Sigma_{a} v_{a}^{*} v_{a}$. This scalar product (and the norm) are not $\mathrm{SU}(2)_{q}$-invariant. Instead, the quantity

$$
\begin{equation*}
\langle v| q^{-j^{0}}|v\rangle \tag{2.6}
\end{equation*}
$$

is invariant under the action of the coproduct (2.2) in the following sense:

$$
\begin{align*}
\Delta\left(J^{ \pm}\right)\langle v| q^{-j^{0}}|v\rangle & =\left(J^{ \pm}\langle v|\right)|v\rangle+\left(q^{-J^{0}}\langle v|\right) J^{ \pm} q^{-J^{0}}|v\rangle \\
& =-\langle v| J^{ \pm}|v\rangle+\langle v| J^{ \pm}|v\rangle=0 \\
\Delta\left(J^{0}\right)\langle v| q^{-J^{0}}|v\rangle & =\left(J^{0}\langle v|\right) q^{-J^{0}}|v\rangle+\langle v| J^{0} q^{-J^{0}}|v\rangle \\
& =-\langle v| J^{0} q^{-J^{0}}|v\rangle+\langle v| J^{0} q^{-J^{0}}|v\rangle \\
& =0 \tag{2.7}
\end{align*}
$$

The quadratic forms

$$
\begin{equation*}
\sum_{a} u_{a}^{*} q^{-j^{0}} v_{a}=\sum_{a} u_{a}^{*} q^{-m_{a}} v_{a} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a} v_{a} q^{m_{a}} u_{a}^{*} \tag{2.9}
\end{equation*}
$$

are $\mathrm{SU}(2)_{q}$-invariant. Note that the first quadratic form (2.8) can be written as $\langle u| q^{-J^{0}}|v\rangle$.

If we demand $\Sigma_{a} v_{a}^{*} q^{-m_{a}} v_{a}=\Sigma_{a} v_{a} q^{m_{a}} v_{a}^{*}$, it follows that $v_{i}^{*} v_{1}=q v_{1} v_{1}^{*}$ and $v_{2}^{*} v_{2}=$ $q^{-1} v_{2} v_{2}^{*}$.

In addition to the $\langle u| q^{-J_{0}}|v\rangle$-invariant form we consider another form

$$
\begin{equation*}
\varepsilon_{a b}\left|e_{a}\right\rangle\left|e_{b}\right\rangle \tag{2.10}
\end{equation*}
$$

with

$$
\begin{align*}
& \varepsilon_{a b}=\left(\begin{array}{cc}
0 & q^{1 / 2} \\
-q^{-1 / 2} & 0
\end{array}\right) \\
& \varepsilon_{a b} \varepsilon_{b c}=-\delta_{a c} \tag{2.11}\\
& \left(\varepsilon_{a b}\right)_{q}=\left(\varepsilon_{b a}\right)_{q}=-\left(\varepsilon_{a b}\right)_{q}^{-1}
\end{align*}
$$

where $\overline{1}=2$ and $\overline{2}=1$.
Note that the q-antisymmetric combination $v_{a} v_{b} \varepsilon_{a b}$ is $\mathrm{SU}(2)_{q}$-invariant, showing that v_{a} and v_{b} do not commute. Instead, they q-commute, i.e. $v_{2} v_{1}=q v_{1} v_{2}$.

3. General $\mathbf{S U (2)})_{q}$-tensors and invariants

Let us consider the tensor-product space $\left(V_{2}\right)^{\otimes k}=V_{2} \otimes \ldots \otimes V_{2}$ with the basis $\left|e_{a_{1}}\right\rangle \otimes \ldots \otimes\left|e_{a_{k}}\right\rangle, a_{1}, \ldots a_{k}=1,2$. Then we write an element of the tensor space $\left(V_{2}\right)^{\otimes k}$. as tensor $|T\rangle$ of the form

$$
\begin{align*}
|T\rangle & =\left|e_{a_{1}}\right\rangle \ldots\left|e_{a_{k}}\right\rangle T^{a_{4}} \ldots T^{a_{k}} \\
& =\left|e_{a_{3}} \ldots e_{a_{k}}\right\rangle T^{a_{1} \ldots a_{k}} . \tag{3.1}
\end{align*}
$$

We have the following proposition:
The tensor $|T\rangle$ transforms under the $\mathrm{SU}(2)_{q}$ algebra as an irreducible representation of spin $j=k / 2$ if and only if $T^{2} T^{1}=q T^{1} T^{2}$.
Let us assume $T^{2} T^{1}=q T^{1} T^{2}$. Then

$$
\begin{align*}
\left|T_{j=k / 2}\right\rangle & =\left|e_{a_{1}} \ldots e_{a_{k}}\right\rangle T^{a_{1} \ldots a_{k}} \\
& =\sum_{m=-j}^{+j}|j m\rangle T^{j m} \tag{3.2}
\end{align*}
$$

The vectors $|j m\rangle$ span the space $V_{2 J+1}$ of the irreducible representation with spin j. From $T^{2} T^{1}=q T^{1} T^{2}$ it follows that

$$
\begin{equation*}
T^{a_{1} \ldots a_{k}}=q^{x\left(a_{1} \cdots a_{k}\right)}: T^{a_{1} \ldots a_{k}}: \tag{3.3}
\end{equation*}
$$

where : T : means the normal order of indices (1 s on the left of 2 s), i.e. $T^{11 \ldots 122 \ldots 2}$ and index 1 (2) appears $n_{1}\left(n_{2}\right)$ times, respectively, χ is the number of inversions with respect to the normal order. Hence

$$
\begin{align*}
|\mathrm{jm}\rangle & =\left\langle\mathrm{e}_{\left\{a_{1} \ldots a_{k}\right.}\right\rangle \\
& =\frac{1}{\sqrt{f}} q^{-M / 2} \sum_{\operatorname{perm}\left(a_{t} \ldots a_{k}\right)} q^{x\left(a_{1} \ldots a_{k}\right)}\left|e_{a_{1} \ldots a_{k}}\right\rangle \tag{3.4}
\end{align*}
$$

where the curly bracket $\left\{a_{1} \ldots a_{k}\right\}$ denote the q-symmetrization. The summation runs over all the allowed permutations of the fixed set of indices ($n_{1} 1 \mathrm{~s}$ and $n_{2} 2 \mathrm{~s}$) and

$$
\begin{align*}
& M=n_{1} n_{2}=(j+m)(j-m) \\
& j=\frac{1}{2}\left(n_{1}+n_{2}\right) \quad m=\frac{1}{2}\left(n_{1}-n_{2}\right) \tag{3.5}\\
& f=\binom{2 j}{j+m}_{q}=\frac{[2 j]_{q}!}{[j+m]_{q}![j-m]_{q}!} .
\end{align*}
$$

The important relation is

$$
\begin{equation*}
f=q^{-M} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)} q^{2 x\left(a_{1} \ldots a_{k}\right)} \tag{3.6}
\end{equation*}
$$

From equation (3.4) and the definition of the coproduct $\Delta\left(J^{ \pm}\right)(2.2)$ we can reproduce

$$
\begin{align*}
& \Delta\left(J^{ \pm}\right)|j m\rangle=\sqrt{[j \mp m]_{q}[j \pm m+1]_{q}}|j m \pm 1\rangle \tag{3.7}\\
& \Delta\left(J^{0}\right)|j m\rangle=m|j m\rangle .
\end{align*}
$$

From (3.2) and (3.4) we immediately obtain the relation between $T^{j m}$ and the components of $T^{a_{1}, \ldots a_{k}}$:

$$
\begin{align*}
& T^{j m}=q^{M / 2} \sqrt{f}: T^{a_{1} \ldots a_{k}}: \tag{3.8}\\
& T^{j-m}=q^{M / 2} \sqrt{f}: T^{a_{1} \ldots \bar{a}_{k}}:
\end{align*}
$$

where $\overline{1}=2, \overline{2}=1$ and $T^{j-m}=\left(T^{j m}\right)_{n_{1} \leftrightarrow n_{2}}$.
In the dual space $\left(V_{2}^{\otimes k}\right)^{*}$ we define

$$
\begin{align*}
& \left\langle e_{a_{k}, a_{1}}\right|=\left(\left|e_{a_{1}, \ldots a_{k}}\right\rangle\right)^{+} \tag{3.9}\\
& \left\langle e_{a_{k}, \ldots, a_{1}} \mid e_{b_{1}, \ldots b_{k}}\right\rangle=\delta_{a_{1} b_{1}} \ldots \delta_{a_{k} b_{k}}
\end{align*}
$$

and in the dual space $\left(V_{2 j+1}\right)^{*}$ we define

$$
\begin{align*}
\langle j m| & =(|j m\rangle)^{+}=\left\langle e_{\left\{a_{k}, \ldots a_{i}\right\}}\right| \\
& \left.=\frac{1}{\sqrt{f}} q^{-M / 2} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)} q^{x\left(a_{1}, \ldots a_{k}\right)}\left(\mid e_{a_{1}, \ldots a_{k}}\right)\right)^{+} \\
& =\frac{1}{\sqrt{f}} q^{-M / 2} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)} q^{x\left(a_{1} \ldots a_{k}\right)\left\langle e_{a_{k} \ldots a_{l}}\right| .} \tag{3.10}
\end{align*}
$$

As a consequence of equations (3.4), (3.6) and (3.9) we obtain

$$
\begin{align*}
\left\langle j m_{1} \mid j m_{2}\right\rangle & =\frac{1}{f} q^{-M} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)} q^{2 x\left(a_{1} \ldots a_{k}\right)} \delta_{m_{1} m_{2}} \\
& =\delta_{m_{1} m_{2}} . \tag{3.11}
\end{align*}
$$

The $\mathrm{SU}(2)_{q}$-invariant quantity built up of the tensors $\langle T|$ and $|U\rangle$ of $\operatorname{spin} j=k / 2$ is

$$
\begin{aligned}
I & =\langle T| q^{-j 0}|U\rangle=\left(T^{a_{k} \ldots a_{1}}\right) * q^{-j 0} U^{a_{1} \ldots a_{k}} \\
& =\sum_{m=-j}^{+j}\left(T^{j m}\right)^{*} U^{j m} q^{-m} .
\end{aligned}
$$

The second type of the $\mathrm{SU}(2)_{q}$-invariant quantity built up of the tensors $|T\rangle$ and $|U\rangle$ of $\operatorname{spin} j=k / 2$ is

$$
\begin{equation*}
I^{\prime}=T^{a_{k} \ldots a_{1}} U^{b_{1} \ldots b_{k}} \varepsilon_{a_{1} b_{1}} \varepsilon_{a_{2} b_{2}} \ldots \varepsilon_{a_{k} b_{k}} \tag{3.13}
\end{equation*}
$$

with $\varepsilon_{a b}$ given in (2.11). Of course, $T^{a} T^{b} \varepsilon_{a b}=0$ if T^{a} and $T^{b} q$-commute.
Furthermore, using equation (3.3) we can also write

$$
\begin{align*}
& I=q^{x(s)}\left(T^{a_{k} \ldots a_{1}}\right)^{*} q^{--^{t}} U^{s\left(a_{1} \ldots a_{k}\right)} \\
& I^{\prime}=q^{x(s)} T^{a_{k} \ldots a_{1}} U^{s\left(b_{1} \ldots b_{k}\right)} \varepsilon_{a_{1} b_{1}} \ldots \varepsilon_{a_{k} b_{k}} \tag{3.14}
\end{align*}
$$

where $s \in S_{k}$ is a fixed permutation of the indices $a_{1} \ldots a_{k}$ and $\chi(s)=$ $\chi\left(a_{1} \ldots a_{k}\right)-\chi\left(s\left(a_{1} \ldots a_{k}\right)\right)$ is the number of inversions with respect to the ($a_{1} \ldots a_{k}$) order.

4. q-Clebsch-Gordan coefficients

Here we present a new simple method for calculating the q-deformed Clebsch-Gordan (C-G) coefficients. It can be immediately extended and applied to $\mathrm{SU}(n)_{q}$ and other quantum groups. This method is a consequence of the previously described tensor method and construction of invariants.

Our notation is

$$
\begin{equation*}
|J M\rangle=\sum_{m_{1}, m_{2}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \tag{4.1}
\end{equation*}
$$

For $q \in \boldsymbol{R}, \mathrm{c}-\mathrm{G}$ coefficients are real

$$
\begin{equation*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}^{*}=\left\langle j_{1} m_{1} \quad j_{2} m_{2} \mid J M\right\rangle_{q} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}=\left\langle J M \mid j_{1} m_{1} j_{2} m_{2}\right\rangle_{q} . \tag{4.3}
\end{equation*}
$$

Using the tensor notation $|j m\rangle=\left|e_{\left\{a_{1} \ldots a_{h}\right\}}\right\rangle((3.4)$, (3.9) and (3.10)), we first calculate C-G coefficient for $j_{1} \otimes j_{2} \rightarrow j_{1}+j_{2}$:

$$
\begin{align*}
\left\langle j_{1}+j_{2} m_{1}\right. & +m_{2}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle_{G} \\
& \left.=\left\langle e_{\left\{b_{1} \ldots b_{1}, a_{k} \ldots, a_{1}\right\}}\right\} e_{\left\{a_{1} \ldots a_{k}\right\}} e_{\left\{b_{1} \ldots b_{1}\right\}}\right\rangle \\
& =\left\langle e_{\{b, a\}} \mid e_{\{a\}} e_{\{b\}}\right\rangle \\
& =\frac{1}{\sqrt{f_{1} f_{2} f_{3}}} q^{-\frac{1}{2}\left(M_{1}+M_{2}+M_{3}\right)} \sum_{\text {perm }(a),(b)} q^{x(a)+x(b)+x(a, b)} \\
& =\sqrt{\frac{f_{1} f_{2}}{f_{3}}} q^{\frac{1}{2}\left(M_{1}+M_{2}-M_{3}\right)} q^{\left(j_{1}-m_{1}\right)\left(j_{2}+m_{2}\right)} \\
& =\sqrt{\frac{f_{1} f_{2}}{f_{3}}} q^{j_{2} m_{2}-j_{2} m_{2}} \tag{4.4}
\end{align*}
$$

where we have used

$$
\begin{equation*}
\chi(a, b)=\chi(a)+\chi(b)+\left(j_{1}-m_{1}\right)\left(j_{2}+m_{2}\right) \tag{4.5}
\end{equation*}
$$

and equation (3.6) together with the abbreviations

$$
\begin{align*}
& k=2 j_{1} \quad l=2 j_{2} \quad j_{3}=j_{1}+j_{2} \quad m_{3}=m_{1}+m_{2} \\
& M_{i}=\left(j_{i}+m_{i}\right)\left(j_{i}-m_{i}\right) \quad f_{i}=\binom{2 j_{i}}{j_{i}+m_{i}}_{q} \tag{4.6}\\
& \frac{f_{1} f_{2}}{f_{3}}=\frac{\left[2 j_{1}\right]_{q}!\left[2 j_{2}\right]_{q}!\left[j_{3}+m_{3}\right] q!\left[j_{3}-m_{3}\right]_{q}!}{\left[j_{1}+m_{1}\right]_{q}!\left[j_{1}-m_{1}\right]_{q}!\left[j_{2}+m_{2}\right]_{q}!\left[j_{2}-m_{2}\right]_{q}!\left[2 j_{3}\right]_{q}!} .
\end{align*}
$$

The main observation is that any c-G coefficient $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$ can be written in the form (4.4). Namely, the C-G coefficient $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$ is projection of the state $\left\langle j_{1} m_{1}\right| \otimes\left\langle j_{2} m_{2}\right|=\left\langle e_{\left\{a_{1} \ldots a_{2 j_{1}}\right\}} e_{\left\{b_{1} \ldots b_{2 j_{2}}\right\}}\right\}$ from the tensor product space $V_{2 j_{1}+1}^{*} \otimes V_{2 j_{2}+1}^{*}$ to the state $|J M\rangle=\mid e_{\left.\left\{a_{1} \ldots\left[a_{2 j_{1}-n+1}\left[\ldots\left[a_{2 j_{1}}, b_{1}\right], 4 .\right] b_{n}\right] \ldots b_{2 j 2}\right\}\right)}$ (with the appropriate symmetry of $2 j_{1}+2 j_{2}$ indices) in the space $V_{2 J+1} \subset V_{2 j_{1}+1} \otimes V_{2 j_{2}+1}$. Here, the square brackets [...] denote q-antisymmetrization and $n=2 j=j_{1}+j_{2}-J$. Furthermore, the state $\left|e_{\left[a_{1}\left[a_{2} \ldots\left[a_{n}, b_{n}\right] \ldots b_{2}\right] b_{1}\right]}\right\rangle \infty \varepsilon_{a_{n} b_{n}} \ldots \varepsilon_{a_{1} b_{1}}$ transforms as a singlet, i.e. it is invariant under the coproduct action in the tensor product space $V_{n} \otimes V_{n}$. Hence, using the equation (3.4), we can write

$$
\begin{align*}
&\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q} \\
&=\mathcal{N} \sum_{\substack{\operatorname{perm}(a, b) \\
(c d)}}\left\langle e_{\{a, b)} e_{\{c, d\}} \mid e_{\{a, d\}}\right\rangle \cdot\left(\varepsilon_{(b, c)}\right)_{n} \\
&=\mathcal{N} \frac{q^{-\frac{1}{2}\left(M_{1}+M_{2}+M_{J}\right)}}{\sqrt{f_{1} f_{2} f_{J}}} \sum_{\substack{\operatorname{perm}(a, b) \\
(c, d)}} q^{x(a, b)+x(c, d)+x(a, d)}\left(\varepsilon_{(b, c)}\right)_{n} \tag{4.7}
\end{align*}
$$

where the length of $b(c)$ is $n=j_{1}+j_{2}-J,\left(\varepsilon_{(b, c)}\right)_{n}=\varepsilon_{b_{1} c_{1}} \ldots \varepsilon_{b_{n} c_{n}}$ and

$$
\begin{equation*}
\mathcal{N}=\left(\frac{\left[2 j_{1}\right]_{q}!\left[2 j_{2}\right]_{q}![2 J+1]_{q}!}{\left[j_{1}+j_{2}-J\right]_{q}!\left[j_{1}-j_{2}+J\right]_{q}!\left[-j_{1}+j_{2}+J\right]_{q}!\left[j_{1}+j_{2}+J+1\right]_{q}!}\right)^{1 / 2} \tag{4.8}
\end{equation*}
$$

Expression (4.7) is efficient for practical calculation of $\mathrm{C}-\mathrm{G}$ coefficients (see appendix).
We also present a simple derivation of the standard expression for $q-c-G$ coefficients [5].

Using the decomposition

$$
\begin{align*}
& \left\langle j_{1} m_{1}\right|=\sum_{m=-j}^{+j}\left\langle j_{1} m_{1} \mid j_{1}-j m_{1}-m j m\right\rangle_{q}\left\langle j_{1}-j m_{1}-m\right|\langle j m| \\
& \left\langle j_{2} m_{2}\right|=\sum_{m=-j}^{+j}\left\langle j_{2} m_{2} \mid j-m j_{2}-j m_{2}+m\right\rangle_{q}\langle j-m|\left\langle j_{2}-j m_{2}+m\right| \tag{4.9}\\
& |J M\rangle=\sum_{m=-j}^{+j}\left\langle j_{1}-j m_{1}-m j_{2}-j m_{2}+m \mid J M\right\rangle_{q}\left|j_{1}-j m_{1}-m\right\rangle\left|j_{2}-j m_{2}+m\right\rangle
\end{align*}
$$

we immediately write

$$
\begin{align*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}=N & \sum_{m=-j}^{+j}\left\langle j_{1} m_{1} \mid j_{1}-j m_{1}-m j m\right\rangle_{q} \\
& \times\left\langle j_{2} m_{2} \mid j-m j_{2}-j m_{2}+m\right\rangle_{q}\langle j m j-m \mid 00\rangle_{q} \\
& \times\left\langle j_{1}-j m_{1}-m j_{2}-j m_{2}+m \mid J M\right\rangle_{q} \tag{4.10}
\end{align*}
$$

where N is the norm depending on j_{1}, j_{2} and J. Three of the four c-G coefficients appearing on the right-hand side have the simple form (4.4). The fourth coefficient ($j m j-m|00\rangle$ also has a simple form. Namely, for $n=2 j$ we have

$$
\begin{align*}
\langle j m j-m \mid 00\rangle_{q} & =\frac{1}{\sqrt{[n+1]_{q}}} \varepsilon_{a_{1} b_{1}} \ldots \varepsilon_{a_{n} b_{n}} \\
& =\frac{1}{\sqrt{[2 j+1]_{q}}} q^{\frac{k}{2} n_{1}}\left(-q^{-\frac{1}{2}}\right)^{n_{2}} \\
& =(-1)^{j-m} \frac{1}{\sqrt{[2 j+1]_{q}}} q^{m} . \tag{4.11}
\end{align*}
$$

The denominator $[2 j+1]^{1 / 2}$ comes from the orthonormality condition.
Finally, inserting equations (4.4) and (4.11) into equation (4.10) we find $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{g}$

$$
\begin{align*}
= & N \sum_{m=-j}^{+j} \frac{(-1)^{j-m}}{\sqrt{[2 j+1]_{q}}} q^{j_{1} m_{2}-j_{2} m_{1}} \\
& \times q^{m(2 J+2 j+1)} \frac{\binom{2 j}{j+m}_{q}\binom{2 j_{1}-2 j}{j_{1}-j+m_{1}-m}_{q}}{} \frac{\left.\sqrt{2 j_{2}-2 j} \begin{array}{c}
2 j_{2}-j+m_{2}+m
\end{array}\right)_{q}}{\sqrt{\binom{2 J}{j+M}_{q}\binom{2 j_{1}}{j_{1}+m_{1}}_{q}\binom{2 j_{2}}{j_{2}+m_{2}}_{q}}} \tag{4.12}
\end{align*}
$$

with $j_{1}+j_{2}-j=J+j$. This result agrees with the result found by Ruegg $[5]$ if the normalization factor N is taken as
$N=\left\{\frac{\left[2 j_{1}\right]_{q}!\left[2 j_{2}\right]_{q}![2 J+1]_{q}!\left[j_{1}+j_{2}-J+1\right]_{q}}{\left[j_{1}+j_{2}-J\right]_{q}!\left[j_{1}-j_{2}+J\right]_{q}!\left[-j_{1}+j_{2}+J\right]_{q}!\left[j_{1}+j_{2}+J+1\right]_{q}!}\right\}^{1 / 2}$.
We point out that our tensor method is simple and can be easily applied to $\mathrm{SU}(n)_{q}$ for $n \geqslant 3$. We also mention that it can be applied to multiparameter quantum groups. For example, it can be shown [9] that c-G coefficients for the two-parameter $\mathrm{SU}(2)_{p, q}$ [10] depend effectively on one parameter only.

5. Symmetry relations

For completeness we rederive the known symmetry relations for q-c-G coefficients and $q-3-j$ symbols. From equation (4.4) immediately follow symmetry relations

$$
\begin{align*}
\left\langle j_{1}-m_{1} \dot{j}_{2}-m_{2} \mid j_{1}+j_{2}-m_{1}-m_{2}\right\rangle_{q} & =\left\langle j_{2} m_{2} j_{1} m_{1} \mid \dot{j}_{1}+j_{2} m_{1}+m_{2}\right\rangle_{q} \\
& =\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{1}+j_{2} m_{1}+m_{2}\right\rangle_{q}-1 \tag{5.1}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle j_{1}-m_{1} j_{1}\right. & +j_{2} m_{1}+m_{2}\left|j_{2} m_{2}\right\rangle_{q} \\
& =(-1)^{j_{1}+m_{1}} q^{-m_{1}} \sqrt{\frac{\left[2 j_{2}+1\right]_{q}}{\left[2 j_{1}+2 j_{2}+1\right]_{q}}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{1}+j_{2} m_{1}+m_{2}\right\rangle_{q} . \tag{5.2}
\end{align*}
$$

Furthermore, from equation (4.11) we have

$$
\begin{align*}
& \langle j-m j m \mid 00\rangle_{q}=(-1)^{2 j}\langle j m j-m \mid 00\rangle_{q}-\frac{1}{-} \tag{5.3}\\
& \langle j m 00 \mid j m\rangle_{q}=1 .
\end{align*}
$$

The symmetry relations (5.1)-(5.3) are sufficient to derive the symmetries of the general C-G coefficients. From equation (4.10) we obtain

$$
\begin{align*}
\left\langle j_{1}-m_{1} j_{2}-m_{2} \mid J-M\right\rangle_{q} & =\left\langle j_{2} m_{2} j_{1} m_{1} \mid J M\right\rangle_{q} \\
& =(-1)^{j_{1}+j_{2}-J}\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}^{-1} \tag{5.4}
\end{align*}
$$

and
$\left\langle j_{1}-m_{1} J M \mid j_{2} m_{2}\right\rangle_{q}=(-1)^{J-j_{2}+m_{1}} q^{-m_{1}} \sqrt{\frac{\left[2 j_{2}+1\right]_{q}}{[2 J+1]_{q}}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{q}$.
(One can deduce this directly from (4.7).)
We can define the q-deformed $3-j$ symbol as

$$
\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{5.6}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)_{q}=q^{\frac{1}{3}\left(m_{2}-m_{1}\right)} \frac{(-1)^{j_{1}-j_{2}-m 3}}{\sqrt{\left[2 j_{3}+1\right]_{q}}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{3}-m_{3}\right\rangle_{q}
$$

where the additional factor $q^{\frac{1}{3}\left(m_{2}-m_{1}\right)}$ comes from the requirement that symmetry relations for the $(3-j)_{q}$ coefficients should not contain explicit q-factors:
$\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ -m_{1} & -m_{2} & -m_{3}\end{array}\right)_{q}=\left(\begin{array}{ccc}j_{2} & j_{1} & j_{3} \\ m_{2} & m_{1} & m_{3}\end{array}\right)_{q}=(-1)^{j_{2}+j_{2}+j_{3}}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)_{4^{-1}}$
and that the $(3-j)_{q}$ coefficients are invariant under cyclic permutations.
Note that the $\mathrm{SU}(2)_{q}$ invariant, built up of the three states $\left\langle j_{1} m_{1}\right\rangle,\left|j_{2} m_{2}\right\rangle$ and $\left|j_{3} m_{3}\right\rangle$, is

$$
\begin{align*}
\sum_{m_{1}, m_{2}, m_{3}}\left\langle j_{3}-\right. & m_{3} j_{3} m_{3}|00\rangle_{q}\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{3}-m_{3}\right\rangle_{q}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle\left|j_{3} m_{3}\right\rangle \\
& =\sum_{m_{1}, m_{2}, m_{3}} q^{\frac{2}{3}\left(m_{1}-m_{3}\right.}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)_{q}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle\left|j_{3} m_{3}\right\rangle \\
& =\sum_{m_{1}, m_{2}, m_{3}} N_{\mathrm{t} 23}\left(\varepsilon_{(b, c)}\right)_{k_{1}}\left(\varepsilon_{(d, e)}\right)_{k_{2}}\left(\varepsilon_{(a, f)}\right)_{k_{3}}\left|e_{\{a, b\rangle}\right\rangle\left|e_{\left\{c_{, d\}}\right\rangle}\right\rangle\left|e_{\{, f, j\}}\right\rangle . \tag{5.8}
\end{align*}
$$

Now we identify

$$
\begin{gather*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{3}-m_{3}\right\rangle_{q}\left\langle j_{3}-m_{3} j_{3} m_{3} \mid 00\right\rangle_{q}=q^{2\left(m_{1}-m_{3}\right)}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)_{q} \\
=N_{123}\left(\varepsilon_{(b, c)}\right)_{k_{1}}\left(\varepsilon_{(d, e)}\right)_{k_{2}}\left(\varepsilon_{(a, f)}\right)_{k_{3}} \tag{5.9}
\end{gather*}
$$

where, for example, $\left(\varepsilon_{(b, c)}\right)_{k}=\varepsilon_{b_{1} c_{1}} \ldots \varepsilon_{b_{k} c_{k}}$ with

$$
\begin{equation*}
k_{1}=j_{1}+j_{2}-j_{3} \quad k_{2}=-j_{1}+j_{2}+j_{3} \quad k_{3}=j_{1}-j_{2}+j_{3} \tag{5.10}
\end{equation*}
$$

and N_{123} is the normalization factor fully symmetric in indices (123). Equation (5.9) represents the connection with the tensor notation used (see (5.7)).

6. Covariant q-oscillators and irreducible tensor operators

Let us define the q-bosonic operators a_{i} and $a^{+}(i=1,2)$ such that $\left|e_{i}\right\rangle=a_{i}^{+}|0,0\rangle_{F}$ and $\left\langle e_{i}\right|={ }_{F}\langle 0,0| a_{i}$, where $|0,0\rangle_{F}$ denotes the (Fock) vacuum state invariant under $\mathrm{SU}(2)_{q}$. Hence, a_{1}^{+}and a_{2}^{+}are covariant operators transforming as an $\mathrm{SU}(2)_{q}$ doublet. Therefore, analogously as in equation (3.2), they q-commute

$$
\begin{equation*}
a_{2}^{+} a_{1}^{+}=q a_{1}^{+} a_{2}^{+} \tag{6.1}
\end{equation*}
$$

Furthermore, we define the projector $P_{(j=k / 2)}$ from the tensor space $\left(V_{2}\right)^{\otimes k}$ to the totally q-symmetric space carrying an irreducible representation of spin $j=k / 2$

$$
\begin{align*}
P_{(j=k / 2)}\left|e_{i_{1} \ldots i_{h}}\right\rangle & =\frac{1}{\sqrt{[k]_{q}!}} a_{i_{1}}^{+} \ldots a_{i_{k}}^{+}|0,0\rangle_{F} \\
& =\frac{1}{\sqrt{[k]_{q}!}} q^{x\left(i_{1}, i_{h}\right)}\left(a_{1}^{+}\right)^{n_{1}}\left(a_{2}^{+}\right)^{n_{2}}|0,0\rangle_{F} \tag{6.2}
\end{align*}
$$

We find from equation (3.4) that

$$
\begin{align*}
& |j m\rangle=q^{M / 2} \frac{\left(a_{1}^{+}\right)^{n_{1}}\left(a_{2}^{+}\right)^{n_{2}}}{\sqrt{\left[n_{1}\right]_{q}!\left[n_{2}\right]_{q}!}}|0,0\rangle_{F} \tag{6.3}\\
& j=\frac{1}{2}\left(n_{1}+n_{2}\right) \quad . \quad m=\frac{1}{2}\left(n_{1}-n_{2}\right)
\end{align*}
$$

We define the number operators N_{i} and N as

$$
\begin{array}{ll}
N_{i}|j m\rangle=N_{i}\left|n_{1}, n_{2}\right\rangle=n_{i}\left|n_{1}, n_{2}\right\rangle \\
N=N_{1}+N_{2} & {\left[N, N_{i}\right]=0} \tag{6.4}\\
{\left[N_{i}, a_{j}^{+}\right]=\delta_{i j} a_{i}^{+}} & {\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{i}} \\
{\left[N, a_{i}^{+}\right]=a_{i}^{+}} & {\left[N, a_{i}\right]=-a_{i} .}
\end{array}
$$

The action of a_{i}^{+}and a_{i} on the basis vectors $|j m\rangle$ is

$$
\begin{align*}
& a_{1}^{+}|j m\rangle=q^{-\frac{i}{2} n_{2}} \sqrt{\left[n_{1}+1\right]_{q}}\left|j+\frac{1}{2}, m+\frac{1}{2}\right\rangle \\
& a_{2}^{+}|j m\rangle=q^{\frac{1}{2} n_{1}} \sqrt{\left[n_{2}+1\right]_{q}}\left|j+\frac{1}{2}, m-\frac{1}{2}\right\rangle \tag{6.5}\\
& a_{1}|j m\rangle=q^{-\frac{1}{2} n_{2}} \sqrt{\left[n_{1}\right]_{q}}\left|j-\frac{1}{2}, m-\frac{1}{2}\right\rangle \\
& a_{2}|j m\rangle=q^{\frac{1}{2} n_{1}} \sqrt{\left[n_{2}\right]_{q}}\left|j-\frac{1}{2}, m+\frac{1}{2}\right\rangle .
\end{align*}
$$

The commutation relations between a_{i} and a_{j}^{+}follow immediately:

$$
\begin{array}{ll}
a_{2}^{+} a_{1}^{+}=q a_{1}^{+} a_{2}^{+} & a_{2} a_{1}=q^{-1} a_{1} a_{2} \tag{6.6}\\
a_{2} a_{1}^{+}=a_{1}^{+} a_{2} & a_{1} a_{2}^{+}=a_{2}^{+} a_{1}
\end{array}
$$

and

$$
\begin{array}{ll}
a_{1} a_{1}^{+}=q^{-N_{2}}\left[N_{1}+1\right]_{q} & a_{1}^{+} a_{1}=q^{-N_{2}}\left[N_{1}\right]_{q} \\
a_{2} a_{2}^{+}=q^{+N_{1}+}\left[N_{2}+1\right]_{q} & a_{2}^{+} a_{2}=q^{+N_{1}}\left[N_{2}\right]_{q} \tag{6.7}\\
H=a_{1}^{+} a_{1}+a_{2}^{+} a_{2}=[N]_{q} . &
\end{array}
$$

Then

$$
\begin{align*}
& a_{1} a_{1}^{+}-q a_{1}^{+} a_{1}=q^{-N} \\
& a_{2} a_{2}^{+}-q^{-1} a_{2}^{+} a_{2}=q^{+N} \tag{6.8}
\end{align*}
$$

and

$$
\begin{align*}
& a_{1} a_{1}^{+}-q^{-1} a_{1}^{+} a_{1}=q^{2 J^{0}} \tag{6.9}\\
& a_{2} a_{2}^{+}-q a_{2}^{+} a_{2}=q^{2 J^{\prime \prime}}
\end{align*}
$$

The generators $J^{ \pm}$and J^{0} can be represented as

$$
\begin{align*}
& J^{+}=q^{-J^{0}+1 / 2} a_{1}^{+} a_{2} \\
& J^{-}=q^{-J^{0}-1 / 2} a_{2}^{+} a_{1} \\
& 2 J^{0}=N_{1}-N_{2} \tag{6.10}\\
& {\left[J^{+}, J^{-}\right]=\left[2 J^{0}\right]_{q}=\left[N_{1}-N_{2}\right]_{q}} \\
& {\left[N, J^{ \pm}\right]=\left[N, J^{0}\right]=0 .}
\end{align*}
$$

We point out that the oscillator operators a_{i} and a_{i}^{+}are covariant since the corresponding tensors $\left|e_{\left\{i_{1} \ldots i_{k}\right\}}\right\rangle$, equation (3.4), are covariant and irreducible by construction.

We note that the covariant q-Bose operators a, a^{+}(6.1) are the same as in [6], where they were constructed using the Wigner $D^{(j)}$-functions. A different set of covariant operators was constructed in [7]. Other constructions [11] are non-covariant in the sense that operators do not transform as $\mathrm{SU}(2)_{q}$ doublet. In the non-covariant approach one has to solve an additional problem of constructing covariant, irreducible tensor operators [12].

The definition of the irreducible tensor operators of $\operatorname{SU}(2)_{q}$ is

$$
\begin{align*}
& \left(J^{ \pm} T_{k m}-q^{-m} T_{k m} J^{ \pm}\right) q^{-J^{0}}=\sqrt{[k \mp m]_{q}[k \pm m+1]_{q}} T_{k m \pm 1} \\
& {\left[J^{0}, T_{k m}\right]=m T_{k m}} \tag{6.11}\\
& |j m\rangle=T_{j m}|0,0\rangle_{F}
\end{align*}
$$

According to equations (6.1)-(6.3) we define a unit tensor operator as

$$
\begin{equation*}
T_{j m}=q^{\frac{1}{2} n_{1} n_{2}} \frac{\left(a_{1}^{+}\right)^{n_{1}}\left(a_{2}^{+}\right)^{n_{2}}}{\sqrt{\left[n_{1}\right]_{q}!\left[n_{2}\right]_{q}!}} \tag{6.12}
\end{equation*}
$$

which is covariant and irreducible by construction and satisfies the requirements (6.11) automatically. Note that $\left(T_{k m}\right)^{+}$transforms as contravariant tensor. One can define the tensor

$$
\begin{equation*}
V_{k \mu}=(-1)^{k-\mu} q^{\mu} T_{k-\mu}^{+} \tag{6.13}
\end{equation*}
$$

which transforms as covariant, irreducible tensor. In tensor notation we have

$$
\begin{equation*}
V_{\left\{i_{1} \ldots i_{k}\right\}}^{+}=\varepsilon_{i_{1} j_{1}} \ldots \varepsilon_{i_{k j k}, j_{k}} T_{\left\{j_{1} \ldots j_{h}\right\}}=(-1)^{n_{2}} q^{\frac{1}{2}\left(n_{1}-n_{2}\right)} T_{k-\mu} \tag{6.14}
\end{equation*}
$$

For completeness, we present relations between the Biedenharn operators b_{i}, b_{i}^{+} [11], t_{i}, t_{i}^{+}[7] and a_{i}, a_{i}^{+}of the present paper:

$$
\begin{align*}
& b_{1}=q^{-N_{2}-\frac{1}{2} N_{1}} t_{1}=q^{\frac{1}{2} N_{2}} a_{1} \\
& b_{2}=q^{-\frac{1}{2} N_{2}} t_{2}=q^{-\frac{1}{2} N_{1}} a_{2} \\
& b_{1}^{+}=t_{1}^{+} q^{-N_{2}-\frac{1}{2} N_{1}}=a_{1}^{+} q^{\frac{1}{2} N_{2}} \tag{6.15}\\
& b_{2}^{+}=t_{2}^{+} q^{-\frac{1}{2} N_{2}}=a_{2}^{+} q^{-\frac{1}{2} N_{1}} .
\end{align*}
$$

We point out that the general covariant oscillators (e.g. t_{i}, t_{i}^{+}and a_{i}, a_{i}^{+}) are characterized by the anionic type q-commutation relation (6.1). Actually, equation (6.1) is a consequence of underlying braid group symmetry and can be also obtained from the $\mathrm{SU}(2)_{q} \check{K}$-matrix [7].

Finally, we give the Borel-Weil realization

$$
\begin{equation*}
a_{i}^{+}=x_{i} \quad a_{i}=D_{i} \quad i=1,2 \tag{6.16}
\end{equation*}
$$

which is covariant automatically. The commutation relations are

$$
\begin{align*}
& x_{2} x_{1}=q x_{1} x_{2} \quad D_{2} D_{1}=q^{-1} D_{1} D_{2} \\
& D_{1} x_{1}=q x_{1} D_{1}+q^{-N} \quad D_{2} X_{2}=q^{-1} x_{2} D_{2}+q^{N} \\
& {\left[D_{i}, x_{j}\right]=0 \quad i \neq j} \tag{6.17}
\end{align*}
$$

or

$$
\begin{align*}
& D_{1} x_{1}=q^{-1} x_{1} D_{1}+q^{2 s^{0}} \\
& D_{2} x_{2}=q x_{2} D_{2}+q^{2 J^{0}} \tag{6.18}
\end{align*}
$$

where

$$
\begin{gather*}
N_{i}=x_{i} \partial_{i} \\
\partial_{i}=\partial / \partial x_{i} . \tag{6.19}
\end{gather*}
$$

It follows that

$$
\begin{align*}
& D_{i} x_{i}^{n}=[n]_{q} x_{i}^{n-1} \\
& D_{1}=\frac{1}{x_{1}}\left[x_{1} \partial_{1}\right]_{q} q^{-x_{2} \partial_{2}} \tag{6.20}\\
& D_{2}=\frac{1}{x_{2}}\left[x_{2} \partial_{2}\right]_{q} q^{x_{1} \partial_{1}}
\end{align*}
$$

Acknowledgments

This work was supported by the joint Croatian-American contract NSF JF 999 and the Scientific Fund of Republic of Croatia.

Appendix

We demonstrate usefulness of the equation (4.7) for practical calculations. Using equations (4.5) and (4.11) we write

$$
\begin{align*}
& \chi(a, b)=\chi(a)+\chi(b)+n_{2}(a) n_{1}(b) \\
& \chi(c, d)=\chi(c)+\chi(d)+n_{2}(c) n_{1}(d) \\
& \chi(a, d)=\chi(a)+\chi(d)+n_{2}(a) n_{1}(d) \tag{A.1}\\
& \chi(b)=\chi(c) \\
& \left(\varepsilon_{(b, c)}\right)_{n}=(-1)^{n_{2}(b)} q^{\left.\frac{1}{1(n}(b)-n_{2}(b)\right)}
\end{align*}
$$

where

$$
\begin{align*}
& n=2 j=j_{1}+j_{2}-J \\
& n_{1}(b)=n_{2}(c)=j+m \\
& n_{2}(b)=n_{1}(c)=j-m \\
& n_{1}(a)=j_{1}-j+m_{1}-m \tag{A.2}\\
& n_{2}(a)=j_{1}-j-m_{1}+m \\
& n_{1}(d)=j_{2}-j+m_{2}+m \\
& n_{2}(d)=j_{2}-j-m_{2}-m .
\end{align*}
$$

After inserting equation (3.6) into equation (4.7), we immediately obtain the final result, equation (4.12):

$$
\begin{align*}
N \frac{q^{-\frac{1}{2}\left(M_{1}+M_{2}+M_{j}\right)}}{\left(f_{1} f_{2} f_{J}\right)^{1 / 2}} & \sum_{n_{1}(b)=0}^{2 j} \sum_{\text {perm }(a)} \sum_{\text {perm }(b)} \sum_{\operatorname{perm}(d)} \\
& \times q^{n_{2}(a) n_{1}(b)+n_{1}(b) n_{1}(d)+n_{2}(a) n_{1}(d)} q^{2 \chi(a)+2 X(b)+2 \chi(d)}\left(\varepsilon_{(b, c)}\right)_{2 j} \\
= & N \frac{q^{-\frac{1}{2}\left(M_{1}+M_{2}+M_{j}\right)}}{\sqrt{f_{1} f_{2} f_{J}}} \sum_{m=-j}^{+j} q^{n_{2}(a) n_{1}(b)+n_{1}(b) n_{1}(d)+n_{2}(a) n_{1}(d)} \\
& \times f_{a} f_{b} f_{d} q^{n_{1}(a) n_{2}(a)+n_{1}(b) n_{2}(b)+n_{1}(d) n_{2}(d)}\left(\varepsilon_{(b, c))_{2 j}}\right. \\
= & N \sum_{m=-j}^{+j}(-1)^{j-m} q^{j_{1} m_{2}-j_{2} m_{1}} q^{m(2 J+2 j+1)} \frac{f_{a} f_{b} f_{d}}{\sqrt{f_{1} f_{2} f_{j}}} . \tag{A.3}
\end{align*}
$$

We extend this simple calculation of the $\mathrm{SU}(2)_{q}$ c-G coefficients to the $\mathrm{SU}(N)_{q}$ quantum groups in the forthcoming paper.

References

[1] Drinfeld V G 1986 Quantum groups, ICM Proceedings, Berkely, p 978
Jimbo M 1986 Lett. Mat. Phys. 11247
Kirillov A N and Reshetikhin N Yu 1989 Advanced Series in Mathematical Physics vol 7 ed V G Kac (Singapore; World Scientific) p 285
[2] Alvarez Gaume L, Gomez C and Sierra G 1990 Nucl. Phys. B 330347
Pasquier V and Saleur H 1990 Nucl. Phys. B 330523
Bonatsos D, Faessler A, Raychev P P, Roussev R P and Smirnov Yu F 1992 J. Phys. A. Math. Gen. 253275
Chang Z 1992 J. Phys. A: Math. Gen. 25 L 781
[3] Schlieker M and Scholl M 1990 Z. Phys. C 47625
Song X C 1992 J. Phys. A: Math. Gen. 252929
[4] Nomura M 1991 J. Phys. Soc. Japan 60789
[5] Ruegg H 1990 J. Math. Phys. 311085
[6] Nomura M 1991 J. Phys. Soc. Japan 603260
[7] Hadjiivanov L K, Paunov R R and Todorov I T 1992 J. Math. Phys. 331379
[8] Groza V A, Kachurik I I and Klimyk A. U 1990 J. Math. Phys. 312769
Nomura M 1990 J. Phys. Soc. Japan 59439
[9] Meljanac S and Milekovic M in preparation
[10] Burdik Ć and Hlavaty L 1991 J. Phys. A: Math. Gen. 24 L165
[11] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
Song X C 1990 J. Phys. A: Math. Gen. 23 L1155
[12] Pan F 1991 J. Phys. A: Math. Gen. 24 L803
Rittenberg V and Scheunert M 1992 J. Math. Phys. 33436

