

Home Search Collections Journals About Contact us My IOPscience

Covariant-tensor method for quantum groups and applications I. $SU(2)_q$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 26 4595 (http://iopscience.iop.org/0305-4470/26/18/024)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.68 The article was downloaded on 01/06/2010 at 19:37

Please note that terms and conditions apply.

Covariant-tensor method for quantum groups and applications I: $SU(2)_q$

S Meljanac† and M Mileković‡

Rudjer Bošković Institute, Bijenička c.54, 41001 Zagreb, Croatia
 Prirodoslovno-Matematički fakultet, Department of Theoretical Physics, Bijenička c. 32, 41000 Zagreb, Croatia

Received 7 December 1992, in final form 15 February 1993

Abstract. A covariant-tensor method for $SU(2)_q$ is described. This tensor method is used to calculate q-deformed Clebsch-Gordan coefficients. The connection with covariant oscillators and irreducible tensor operators is established. This approach can be extended to other quantum groups.

1. Introduction

In recent years there has been considerable interest in q-deformations of Lie algebras (quantum groups) [1] and their applications in physics [2]. The main goal of these applications is a generalization of the concept of symmetry. The properties of quantum groups are similar to those of classical Lie groups with q not being a root of unity. However, it is still not clear to what extent the familiar tensor methods, used in the representation theory of Lie algebras, are applicable to the case of q-deformations.

Different types of tensor calculus for $SU(2)_q$ were proposed and applied in references [3-7]. However, no simple covariant-tensor calculus for $SU(n)_q$ was presented. In this paper we propose a simple covariant-tensor method for $SU(2)_q$ which can be extended to the general $SU(n)_q$. Details for $SU(n)_q$ and especially for $SU(3)_q$ will be published separately.

The plan of the paper is the following. In section 2 we recall the basics of the $SU(2)_q$ algebra, its fundamental representation and invariants. In section 3 we construct the general $SU(2)_q$ -covariant tensors and invariants. In section 4 we apply this tensor method to calculate q-deformed Clebsch-Gordan coefficients and in section 5 we demonstrate their symmetries. We point out that this method is simpler than that used in previous calculations [5, 8] and can be generalized to other quantum groups. Finally, in section 6 we connect covariant tensors with covariant q-oscillators and construct unit irreducible tensor operators.

2. $SU(2)_{a}$ -algebra, its fundamental representation and invariants

Let us recall that three generators of $SU(2)_q$ obey the following commutation relations [1] (we take q real)

 $[J^0, J^{\pm}] = \pm J^{\pm}$

(2.1)

0305-4470/93/184595+12\$07.50 © 1993 IOP Publishing Ltd

4595

S Meljanac and M Milekovic

$$[J^+, J^-] = [2J^0]_q = \frac{q^{2J^0} - q^{-2J^0}}{q - q^{-1}}.$$

The coproduct Δ ; $SU(2)_q \rightarrow SU(2)_q \otimes SU(2)_q$ is defined as

$$\Delta(J^{\pm}) = J^{\pm} \otimes q^{J^0} + q^{-J^0} \otimes J^{\pm}$$

$$\Delta(J^0) = J^0 \otimes 1 + 1 \otimes J^0.$$
 (2.2)

Let V_2 be a two-dimensional space spanned by the basis $|e_a\rangle$, a = 1, 2, and $|v\rangle = \sum_a |e_a\rangle v_a \in V_2$. The SU(2)_q generators J^k ($k = \pm, 0$) act as

$$J^{k}|e_{a}\rangle = \sum_{b} (J^{k})_{ba}|e_{b}\rangle$$

$$J^{k}|v\rangle = \sum_{a,b} (J^{k})_{ba}|e_{b}\rangle v_{a}$$

$$= \sum_{b} |e_{b}\rangle (J^{k}V)_{b}$$

$$= \sum_{b} |e_{b}\rangle v'_{b}.$$
(2.3)

In the fundamental representation of $SU(2)_q$ the generator J^k s are ordinary 2×2 Pauli matrices.

Let $(V_2)^*$ be a dual space with the basis $\langle e_a| = (|e_a\rangle)^+$ and $\langle v| = (|v\rangle)^+ = \sum_a v_a^* \langle e_a|$. The dual basis is orthonormal, i.e. $\langle e_a|e_b\rangle = \delta_{ab}$. We note that the components of the vector $|v\rangle$, v_a , (or v_a^* of $\langle v|$) are not defined as real or complex numbers. Their algebraic properties follow from SU(2)_q-invariance requirements. Here we identify (for the spin $j = \frac{1}{2}$)

$$\begin{aligned} |e_a\rangle &= |\frac{1}{2}, \ m_a\rangle \\ \langle e_a| &= \langle \frac{1}{2}, \ m_a| \end{aligned} \qquad \qquad m_a &= \pm \frac{1}{2} \end{aligned}$$
 (2.4)

and the matrix elements of the generators J^k are

$$\langle e_a | J^0 | e_a \rangle = m_a$$

$$\langle e_1 | J^+ | e_2 \rangle = \langle e_2 | J^- | e_1 \rangle = 1.$$

$$(2.5)$$

We define a scalar product as $\langle u|v\rangle = \sum_a u_a^* v_a$ and the norm as $\langle v|v\rangle = \sum_a v_a^* v_a$. This scalar product (and the norm) are not SU(2)_q-invariant. Instead, the quantity

$$\langle v|q^{-J^0}|v\rangle$$
 (2.6)

is invariant under the action of the coproduct (2.2) in the following sense:

$$\Delta(J^{\pm})\langle v|q^{-J^{0}}|v\rangle = (J_{\perp}^{\pm}\langle v|)|v\rangle + (q^{-J^{0}}\langle v|)J^{\pm}q^{-J^{0}}|v\rangle$$

$$= -\langle v|J^{\pm}|v\rangle + \langle v|J^{\pm}|v\rangle = 0$$

$$\Delta(J^{0})\langle v|q^{-J^{0}}|v\rangle = (J^{0}\langle v|)q^{-J^{0}}|v\rangle + \langle v|J^{0}q^{-J^{0}}|v\rangle$$

$$= -\langle v|J^{0}q^{-J^{0}}|v\rangle + \langle v|J^{0}q^{-J^{0}}|v\rangle$$

$$= 0. \qquad (2.7)$$

The quadratic forms

$$\sum_{a} u_{a}^{*} q^{-J^{0}} v_{a} = \sum_{a} u_{a}^{*} q^{-m_{a}} v_{a}$$
(2.8)

4596

and

$$\sum_{a} v_a q^{m_a} u_a^* \tag{2.9}$$

are SU(2)_q-invariant. Note that the first quadratic form (2.8) can be written as $\langle u|q^{-J_0}|v\rangle$.

If we demand $\sum_a v_a^* q^{-m_a} v_a = \sum_a v_a q^{m_a} v_a^*$, it follows that $v_1^* v_1 = q v_1 v_1^*$ and $v_2^* v_2 = q^{-1} v_2 v_2^*$.

In addition to the $\langle u|q^{-J_0}|v\rangle$ -invariant form we consider another form

$$|\varepsilon_{ab}|e_a\rangle|e_b\rangle$$
 (2.10)

with

$$\varepsilon_{ab} = \begin{pmatrix} 0 & q^{1/2} \\ -q^{-1/2} & 0 \end{pmatrix}$$

$$\varepsilon_{ab}\varepsilon_{bc} = -\delta_{ac}$$

$$(\varepsilon_{a\bar{b}})_q = (\varepsilon_{ba})_q = -(\varepsilon_{ab})_{q^{-1}}$$

$$(2.11)$$

where $\overline{1} = 2$ and $\overline{2} = 1$.

Note that the q-antisymmetric combination $v_a v_b \varepsilon_{ab}$ is $SU(2)_q$ -invariant, showing that v_a and v_b do not commute. Instead, they q-commute, i.e. $v_2 v_1 = q v_1 v_2$.

3. General SU(2)_a-tensors and invariants

Let us consider the tensor-product space $(V_2)^{\otimes k} = V_2 \otimes \ldots \otimes V_2$ with the basis $|e_{a_1}\rangle \otimes \ldots \otimes |e_{a_k}\rangle$, $a_1, \ldots a_k = 1, 2$. Then we write an element of the tensor space $(V_2)^{\otimes k}$ as tensor $|T\rangle$ of the form

$$|T\rangle = |e_{a_1}\rangle \dots |e_{a_k}\rangle T^{a_1} \dots T^{a_k}$$

= $|e_{a_1} \dots e_{a_k}\rangle T^{a_1 \dots a_k}$. (3.1)

We have the following proposition:

The tensor $|T\rangle$ transforms under the SU(2)_q algebra as an irreducible representation of spin j = k/2 if and only if $T^2T^1 = qT^1T^2$.

Let us assume
$$T^2T^1 = qT^1T^2$$
. Then

$$T_{j=k/2} \rangle = |e_{a_1} \dots e_{a_k}\rangle T^{a_1 \dots a_k}$$
$$= \sum_{m=-j}^{+j} |jm\rangle T^{jm}.$$
(3.2)

The vectors $|jm\rangle$ span the space V_{2j+1} of the irreducible representation with spin j. From $T^2T^1 = qT^1T^2$ it follows that

$$T^{a_1...a_k} = q^{x(a_1,...a_k)}; T^{a_1...a_k};$$
(3.3)

where : T: means the normal order of indices (1s on the left of 2s), i.e. $T^{11\dots 122\dots 2}$ and index 1 (2) appears n_1 (n_2) times, respectively. χ is the number of inversions with respect to the normal order. Hence

$$|j\mathbf{m}\rangle = |e_{\{a_1...a_k\}}\rangle = \frac{1}{\sqrt{f}} q^{-M/2} \sum_{\text{perm}(a_1...a_k)} q^{x(a_1...a_k)} |e_{a_1...a_k}\rangle$$
(3.4)

where the curly bracket $\{a_1 \dots a_k\}$ denote the q-symmetrization. The summation runs over all the allowed permutations of the fixed set of indices $(n_1 \text{ 1s and } n_2 \text{ 2s})$ and

$$M = n_1 n_2 = (j+m)(j-m)$$

$$j = \frac{1}{2}(n_1+n_2) \qquad m = \frac{1}{2}(n_1-n_2)$$

$$f = {2j \choose j+m}_q = \frac{[2j]_q !}{[j+m]_q ! [j-m]_q !}.$$
(3.5)

The important relation is

$$f = q^{-M} \sum_{\text{perm}(a_1...a_k)} q^{2x(a_1...a_k)}.$$
 (3.6)

From equation (3.4) and the definition of the coproduct $\Delta(J^{\pm})$ (2.2) we can reproduce

$$\Delta(J^{\pm})|jm\rangle = \sqrt{[j \pm m]_q [j \pm m + 1]_q} |jm \pm 1\rangle$$

$$\Delta(J^0)|jm\rangle = m|jm\rangle.$$
(3.7)

From (3.2) and (3.4) we immediately obtain the relation between T^{jm} and the components of $T^{a_1 \dots a_k}$:

$$T^{jm} = q^{M/2} \sqrt{f} : T^{a_1 \dots a_k} :$$

$$T^{j-m} = q^{M/2} \sqrt{f} : T^{\bar{a}_1 \dots \bar{a}_k} :$$
(3.8)

where $\overline{1} = 2$, $\overline{2} = 1$ and $T^{j-m} = (T^{jm})_{n_1 \Leftrightarrow n_2}$. In the dual space $(V_2^{\otimes k})^*$ we define

$$\langle e_{a_k\dots a_l} | = (|e_{a_1\dots a_k}\rangle)^+$$

$$\langle e_{a_k\dots a_l} | e_{b_1\dots b_k} \rangle = \delta_{a_1 b_1} \dots \delta_{a_k b_k}$$
(3.9)

and in the dual space $(V_{2j+1})^*$ we define

$$\langle jm | = (|jm\rangle)^{+} = \langle e_{\{a_{k}...a_{1}\}} |$$

$$= \frac{1}{\sqrt{f}} q^{-M/2} \sum_{\text{perm}(a_{1}...a_{k})} q^{x(a_{1}...a_{k})} (|e_{a_{1}...a_{k}}\rangle)^{+}$$

$$= \frac{1}{\sqrt{f}} q^{-M/2} \sum_{\text{perm}(a_{1}...a_{k})} q^{x(a_{1}...a_{k})} \langle e_{a_{k}...a_{1}} |. \qquad (3.10)$$

As a consequence of equations (3.4), (3.6) and (3.9) we obtain

$$\langle jm_1 | jm_2 \rangle = \frac{1}{f} q^{-M} \sum_{\text{perm}(a_1...a_k)} q^{2x(a_1...a_k)} \delta_{m_1m_2}$$

= $\delta_{m_1m_2}$. (3.11)

The SU(2)_q-invariant quantity built up of the tensors $\langle T |$ and $|U \rangle$ of spin j = k/2 is

$$I = \langle T | q^{-J^{0}} | U \rangle = (T^{a_{k} \dots a_{1}})^{*} q^{-J^{0}} U^{a_{1} \dots a_{k}}$$
$$= \sum_{m=-j}^{+j} (T^{jm})^{*} U^{jm} q^{-m}.$$

The second type of the SU(2)_q-invariant quantity built up of the tensors $|T\rangle$ and $|U\rangle$ of spin j = k/2 is

$$I' = T^{a_k \dots a_1} U^{b_1 \dots b_k} \varepsilon_{a_1 b_1} \varepsilon_{a_2 b_2} \dots \varepsilon_{a_k b_k}$$

$$(3.13)$$

with ε_{ab} given in (2.11). Of course, $T^a T^b \varepsilon_{ab} = 0$ if T^a and $T^b q$ -commute. Furthermore, using equation (3.3) we can also write

$$I = q^{\chi(s)} (T^{a_k \dots a_1})^* q^{-J^0} U^{s(a_1 \dots a_k)}$$

$$I' = q^{\chi(s)} T^{a_k \dots a_1} U^{s(b_1 \dots b_k)} \varepsilon_{a_1 b_1} \dots \varepsilon_{a_k b_k}$$
(3.14)

where $s \in S_k$ is a fixed permutation of the indices $a_1 \dots a_k$ and $\chi(s) = \chi(a_1 \dots a_k) - \chi(s(a_1 \dots a_k))$ is the number of inversions with respect to the $(a_1 \dots a_k)$ order.

4. q-Clebsch-Gordan coefficients

Here we present a new simple method for calculating the q-deformed Clebsch-Gordan (C-G) coefficients. It can be immediately extended and applied to $SU(n)_q$ and other quantum groups. This method is a consequence of the previously described tensor method and construction of invariants.

Our notation is

$$JM\rangle = \sum_{m_1,m_2} \langle j_1 m_1 \ j_2 m_2 | JM \rangle_q | j_1 m_1 \rangle | j_2 m_2 \rangle.$$

$$\tag{4.1}$$

For $q \in \mathbf{R}$, C-G coefficients are real

$$\langle j_1 m_1 \ j_2 m_2 | JM \rangle_q^* = \langle j_1 m_1 \ j_2 m_2 | JM \rangle_q$$
(4.2)

and

$$\langle j_1 \ m_1 j_2 m_2 | JM \rangle_q = \langle JM | j_1 m_1 \ j_2 m_2 \rangle_q.$$

$$(4.3)$$

Using the tensor notation $|jm\rangle = |e_{\{a_1...a_k\}}\rangle$ ((3.4), (3.9) and (3.10)), we first calculate C-G coefficient for $j_1 \otimes j_2 \rightarrow j_1 + j_2$:

$$\langle j_{1} + j_{2} \ m_{1} + m_{2} | j_{1} m_{1} \ j_{2} m_{2} \rangle_{q}$$

$$= \langle e_{\{b_{i}...b_{1},a_{k}...a_{1}\}} | e_{\{a_{1}...a_{k}\}} e_{\{b_{1}...b_{l}\}} \rangle$$

$$= \langle e_{\{b,a\}} | e_{\{a\}} e_{\{b\}} \rangle$$

$$= \frac{1}{\sqrt{f_{1}f_{2}f_{3}}} q^{-\frac{1}{2}(M_{1}+M_{2}+M_{3})} \sum_{\text{perm}(a),(b)} q^{\chi(a)+\chi(b)+\chi(a,b)}$$

$$= \sqrt{\frac{f_{1}f_{2}}{f_{3}}} q^{\frac{1}{2}(M_{1}+M_{2}-M_{3})} q^{(j_{1}-m_{1})(j_{2}+m_{2})}$$

$$= \sqrt{\frac{f_{1}f_{2}}{f_{3}}} q^{j_{1}m_{2}-j_{2}m_{1}}$$

$$(4.4)$$

where we have used

$$\chi(a,b) = \chi(a) + \chi(b) + (j_1 - m_1)(j_2 + m_2)$$
(4.5)

and equation (3.6) together with the abbreviations

$$k = 2j_1 \qquad l = 2j_2 \qquad j_3 = j_1 + j_2 \qquad m_3 = m_1 + m_2$$

$$M_i = (j_i + m_i)(j_i - m_i) \qquad f_i = \begin{pmatrix} 2j_i \\ j_i + m_i \end{pmatrix}_q \qquad (4.6)$$

$$\frac{f_1 f_2}{f_3} = \frac{[2j_1]_q \, ![2j_2]_q \, ![j_3 + m_3]q \, ![j_3 - m_3]_q \, !}{[j_1 + m_1]_q \, ![j_1 - m_1]_q \, ![j_2 - m_2]_q \, ![2j_3]_q \, !}.$$

The main observation is that any C-G coefficient $\langle j_1m_1 \ j_2m_2 | JM \rangle$ can be written in the form (4.4). Namely, the C-G coefficient $\langle j_1m_1 \ j_2m_2 | JM \rangle$ is projection of the state $\langle j_1m_1 | \otimes \langle j_2m_2 | = \langle e_{\{a_1\dots a_{2j_1}\}}e_{\{b_1\dots b_{2j_2}\}} |$ from the tensor product space $V_{2j_1+1}^* \otimes V_{2j_2+1}^*$ to the state $|JM \rangle = |e_{\{a_1\dots (a_{2j_1}-n+1[\dots (a_{2j_1},b_1] \dots (b_{2j_2})\})}|$ (with the appropriate symmetry of $2j_1 + 2j_2$ indices) in the space $V_{2J+1} \subset V_{2j_1+1} \otimes V_{2j_2+1}^*$. Here, the square brackets [...] denote q-antisymmetrization and $n = 2j = j_1 + j_2 - J$. Furthermore, the state $|e_{[a_1[a_2\dots (a_n,b_n] \dots b_2]b_1]} \otimes \varepsilon_{a_nb_n} \dots \varepsilon_{a_1b_1}$ transforms as a singlet, i.e. it is invariant under the coproduct action in the tensor product space $V_n \otimes V_n$. Hence, using the equation (3.4), we can write

$$\langle j_1 m_1 \ j_2 m_2 | JM \rangle_q$$

$$= \mathcal{N} \sum_{\substack{\text{perm}(a,b)\\(c,d)}} \langle e_{\{a,b\}} e_{\{c,d\}} | e_{\{a,d\}} \rangle \cdot (\varepsilon_{(b,c)})_n$$

$$= \mathcal{N} \frac{q^{-\frac{1}{2}(M_1 + M_2 + M_j)}}{\sqrt{f_1 f_2 f_j}} \sum_{\substack{\text{perm}(a,b)\\(c,d)}} q^{x(a,b) + x(c,d) + x(a,d)} (\varepsilon_{(b,c)})_n$$
(4.7)

where the length of b (c) is $n = j_1 + j_2 - J$, $(\varepsilon_{(b,c)})_n = \varepsilon_{b_1c_1} \dots \varepsilon_{b_nc_n}$ and

$$\mathcal{N} = \left(\frac{[2j_1]_q \, ! \, [2j_2]_q \, ! \, [2J+1]_q \, !}{[j_1+j_2+J]_q \, ! \, [j_1+j_2+J]_q \, ! \, [j_1+j_2+J]_q \, ! \, [j_1+j_2+J+1]_q \, !}\right)^{1/2}.$$
(4.8)

Expression (4.7) is efficient for practical calculation of C-G coefficients (see appendix).

We also present a simple derivation of the standard expression for q-C-G coefficients [5].

Using the decomposition

$$\langle j_{1}m_{1}| = \sum_{m=-j}^{+j} \langle j_{1}m_{1}|j_{1}-j \ m_{1}-m \ jm \rangle_{q} \langle j_{1}-j \ m_{1}-m|\langle jm|$$

$$\langle j_{2}m_{2}| = \sum_{m=-j}^{+j} \langle j_{2}m_{2}|j-m \ j_{2}-j \ m_{2}+m \rangle_{q} \langle j-m|\langle j_{2}-j \ m_{2}+m|$$

$$|JM\rangle = \sum_{m=-j}^{+j} \langle j_{1}-j \ m_{1}-m \ j_{2}-j \ m_{2}+m|JM\rangle_{q} |j_{1}-j \ m_{1}-m\rangle|j_{2}-j \ m_{2}+m\rangle$$
(4.9)

we immediately write

$$\langle j_{1}m_{1} \ j_{2}m_{2} | JM \rangle_{q} = N \sum_{m=-j}^{+j} \langle j_{1}m_{1} | j_{1} - j \ m_{1} - m \ jm \rangle_{q}$$

$$\times \langle j_{2}m_{2} | j - m \ j_{2} - j \ m_{2} + m \rangle_{q} \langle jm \ j - m | 00 \rangle_{q}$$

$$\times \langle j_{1} - j \ m_{1} - m \ j_{2} - j \ m_{2} + m | JM \rangle_{q}$$

$$(4.10)$$

where N is the norm depending on j_1 , j_2 and J. Three of the four C-G coefficients appearing on the right-hand side have the simple form (4.4). The fourth coefficient $\langle jm \ j-m | 00 \rangle$ also has a simple form. Namely, for n=2j we have

$$\langle jm \ j - m | 00 \rangle_q = \frac{1}{\sqrt{[n+1]_q}} \, \varepsilon_{a_1 b_1} \dots \, \varepsilon_{a_n b_n}$$
$$= \frac{1}{\sqrt{[2j+1]_q}} \, q^{\frac{1}{2} n_1} (-q^{-\frac{1}{2}})^{n_2}$$
$$= (-1)^{j-m} \frac{1}{\sqrt{[2j+1]_q}} \, q^m. \tag{4.11}$$

The denominator $[2j+1]^{1/2}$ comes from the orthonormality condition.

Finally, inserting equations (4.4) and (4.11) into equation (4.10) we find $\langle j_1m_1 \ j_2m_2|JM\rangle_a$

$$= N \sum_{m=-j}^{+j} \frac{(-1)^{j-m}}{\sqrt{[2j+1]_q}} q^{j_1 m_2 - j_2 m_1} \\ \times q^{m(2J+2j+1)} \frac{\binom{2j}{j+m}_q \binom{2j_1 - 2j}{j_1 - j + m_1 - m}_q \binom{2j_2 - 2j}{j_2 - j + m_2 + m}_q}{\sqrt{\binom{2J}{J+M}_q \binom{2j_1}{j_1 + m_1}_q \binom{2j_2}{j_2 + m_2}_q}}$$
(4.12)

with $j_1+j_2-j=J+j$. This result agrees with the result found by Ruegg [5] if the normalization factor N is taken as

$$N = \left\{ \frac{[2j_1]_q ! [2j_2]_q ! [2J+1]_q ! [j_1+j_2-J+1]_q}{[j_1+j_2-J]_q ! [j_1-j_2+J]_q ! [-j_1+j_2+J]_q ! [j_1+j_2+J+1]_q !} \right\}^{1/2}.$$
(4.13)

We point out that our tensor method is simple and can be easily applied to $SU(n)_q$ for $n \ge 3$. We also mention that it can be applied to multiparameter quantum groups. For example, it can be shown [9] that C-G coefficients for the two-parameter $SU(2)_{p,q}$ [10] depend effectively on one parameter only.

5. Symmetry relations

For completeness we rederive the known symmetry relations for q-C-G coefficients and q-3-j symbols. From equation (4.4) immediately follow symmetry relations

$$\langle j_1 - m_1 \ j_2 - m_2 | \ j_1 + j_2 - m_1 - m_2 \rangle_q = \langle j_2 m_2 \ j_1 m_1 | \ j_1 + j_2 \ m_1 + m_2 \rangle_q = \langle j_1 m_1 \ j_2 m_2 | \ j_1 + j_2 \ m_1 + m_2 \rangle_{q^{-1}}$$

$$(5.1)$$

and

$$\langle j_1 - m_1 \ j_1 + j_2 \ m_1 + m_2 | \ j_2 m_2 \rangle_q$$

$$= (-1)^{j_1 + m_1} q^{-m_1} \sqrt{\frac{[2j_2 + 1]_q}{[2j_1 + 2j_2 + 1]_q}} \langle j_1 m_1 \ j_2 m_2 | \ j_1 + j_2 \ m_1 + m_2 \rangle_q.$$
(5.2)

Furthermore, from equation (4.11) we have

$$\langle j-m \ jm \ |00\rangle_q = (-1)^{2j} \langle jm \ j-m \ |00\rangle_{q^{-1}}$$

$$\langle jm \ 00 \ jm\rangle_q = 1.$$

$$(5.3)$$

The symmetry relations (5.1)-(5.3) are sufficient to derive the symmetries of the general C-G coefficients. From equation (4.10) we obtain

$$\langle j_1 - m_1 \ j_2 - m_2 | J - M \rangle_q = \langle j_2 m_2 \ j_1 m_1 | JM \rangle_q = (-1)^{j_1 + j_2 - J} \langle j_1 m_1 \ j_2 m_2 | JM \rangle_{q^{-1}}$$
(5.4)

and

$$\langle j_1 - m_1 \ JM | j_2 m_2 \rangle_q = (-1)^{J - j_2 + m_1} q^{-m_1} \sqrt{\frac{[2j_2 + 1]_q}{[2J + 1]_q}} \langle j_1 m_1 \ j_2 m_2 | JM \rangle_q.$$
 (5.5)

(One can deduce this directly from (4.7).)

We can define the q-deformed 3-j symbol as

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}_q = q^{\frac{1}{3}(m_2 - m_1)} \frac{(-1)^{j_1 - j_2 - m_3}}{\sqrt{[2j_3 + 1]_q}} \langle j_1 m_1 \ j_2 m_2 | \ j_3 - m_3 \rangle_q$$
(5.6)

where the additional factor $q^{\frac{1}{3}(m_2-m_1)}$ comes from the requirement that symmetry relations for the $(3-j)_q$ coefficients should not contain explicit q-factors:

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix}_q = \begin{pmatrix} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{pmatrix}_q = (-1)^{j_1 + j_2 + j_3} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}_{q^{-1}}$$
(5.7)

and that the $(3-j)_q$ coefficients are invariant under cyclic permutations.

Note that the SU(2)_q invariant, built up of the three states $|j_1m_1\rangle$, $|j_2m_2\rangle$ and $|j_3m_3\rangle$, is

$$\sum_{m_1,m_2,m_3} \langle j_3 - m_3 \ j_3 m_3 | 00 \rangle_q \langle j_1 m_1 \ j_2 m_2 | j_3 - m_3 \rangle_q | j_1 m_1 \rangle | j_2 m_2 \rangle | j_3 m_3 \rangle$$

$$= \sum_{m_1,m_2,m_3} q_3^{2(m_1 - m_3)} \begin{pmatrix} j_1 \ j_2 \ j_3 \\ m_1 \ m_2 \ m_3 \end{pmatrix}_q | j_1 m_1 \rangle | j_2 m_2 \rangle | j_3 m_3 \rangle$$

$$= \sum_{m_1,m_2,m_3} N_{123}(\varepsilon_{(b,c)})_{k_1}(\varepsilon_{(d,e)})_{k_2}(\varepsilon_{(a,f)})_{k_3} | e_{\{a,b\}} \rangle | e_{\{c,d\}} \rangle | e_{\{e,f\}} \rangle. \tag{5.8}$$

Now we identify

$$\langle j_1 m_1 \ j_2 m_2 | j_3 - m_3 \rangle_q \langle j_3 - m_3 \ j_3 m_3 | 00 \rangle_q = q^{2(m_1 - m_3)} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}_q$$

$$= N_{123}(\varepsilon_{(b,c)})_{k_1}(\varepsilon_{(d,c)})_{k_2}(\varepsilon_{(a,f)})_{k_3}$$
(5.9)

where, for example, $(\varepsilon_{(b,c)})_k = \varepsilon_{b_1c_1} \dots \varepsilon_{b_kc_k}$ with

$$k_1 = j_1 + j_2 - j_3$$
 $k_2 = -j_1 + j_2 + j_3$ $k_3 = j_1 - j_2 + j_3$ (5.10)

and N_{123} is the normalization factor fully symmetric in indices (123). Equation (5.9) represents the connection with the tensor notation used (see (5.7)).

6. Covariant q-oscillators and irreducible tensor operators

Let us define the q-bosonic operators a_i and a^+ (i = 1, 2) such that $|e_i\rangle = a_i^+|0, 0\rangle_F$ and $\langle e_i| = {}_F \langle 0, 0|a_i$, where $|0, 0\rangle_F$ denotes the (Fock) vacuum state invariant under SU(2)_q. Hence, a_1^+ and a_2^+ are covariant operators transforming as an SU(2)_q doublet. Therefore, analogously as in equation (3.2), they q-commute

$$a_2^+ a_1^+ = q a_1^+ a_2^+. \tag{6.1}$$

Furthermore, we define the projector $P_{(j=k/2)}$ from the tensor space $(V_2)^{\otimes k}$ to the totally q-symmetric space carrying an irreducible representation of spin j = k/2

$$P_{(j=k/2)}|e_{i_1\dots i_k}\rangle = \frac{1}{\sqrt{[k]_q!}} a_{i_1}^+ \dots a_{i_k}^+|0,0\rangle_F$$
$$= \frac{1}{\sqrt{[k]_q!}} q^{\chi(i_1\dots i_k)} (a_1^+)^{n_1} (a_2^+)^{n_2}|0,0\rangle_F.$$
(6.2)

We find from equation (3.4) that

$$|jm\rangle = q^{M/2} \frac{(a_1^+)^{n_1} (a_2^+)^{n_2}}{\sqrt{[n_1]_q ! [n_2]_q !}} |0, 0\rangle_F$$

$$j = \frac{1}{2} (n_1 + n_2) \qquad m = \frac{1}{2} (n_1 - n_2).$$
(6.3)

We define the number operators N_i and N as

$$N_{i}|jm\rangle = N_{i}|n_{1}, n_{2}\rangle = n_{i}|n_{1}, n_{2}\rangle$$

$$N = N_{1} + N_{2} \qquad [N, N_{i}] = 0 \qquad [N_{1}, N_{2}] = 0$$

$$[N_{i}, a_{j}^{+}] = \delta_{ij}a_{i}^{+} \qquad [N_{i}, a_{j}] = -\delta_{ij}a_{i}$$

$$[N, a_{i}^{+}] = a_{i}^{+} \qquad [N, a_{i}] = -a_{i}.$$
(6.4)

The action of a_i^+ and a_i on the basis vectors $|jm\rangle$ is

$$a_{1}^{+}|jm\rangle = q^{-\frac{1}{2}n_{2}}\sqrt{[n_{1}+1]_{q}}|j+\frac{1}{2}, m+\frac{1}{2}\rangle$$

$$a_{2}^{+}|jm\rangle = q^{\frac{1}{2}n_{1}}\sqrt{[n_{2}+1]_{q}}|j+\frac{1}{2}, m-\frac{1}{2}\rangle$$

$$a_{1}|jm\rangle = q^{-\frac{1}{2}n_{2}}\sqrt{[n_{1}]_{q}}|j-\frac{1}{2}, m-\frac{1}{2}\rangle$$

$$a_{2}|jm\rangle = q^{\frac{1}{2}n_{1}}\sqrt{[n_{2}]_{q}}|j-\frac{1}{2}, m+\frac{1}{2}\rangle.$$
(6.5)

The commutation relations between a_i and a_j^+ follow immediately:

$$a_{2}^{+}a_{1}^{+} = qa_{1}^{+}a_{2}^{+} \qquad a_{2}a_{1} = q^{-1}a_{1}a_{2}$$

$$a_{2}a_{1}^{+} = a_{1}^{+}a_{2} \qquad a_{1}a_{2}^{+} = a_{2}^{+}a_{1}$$
(6.6)

and

$$a_{1}a_{1}^{+} = q^{-N_{2}}[N_{1}+1]_{q} \qquad a_{1}^{+}a_{1} = q^{-N_{2}}[N_{1}]_{q}$$

$$a_{2}a_{2}^{+} = q^{+N_{1}}[N_{2}+1]_{q} \qquad a_{2}^{+}a_{2} = q^{+N_{1}}[N_{2}]_{q} \qquad (6.7)$$

$$H = a_{1}^{+}a_{1} + a_{2}^{+}a_{2} = [N]_{q}.$$

Then

$$a_{1}a_{1}^{+} - qa_{1}^{+}a_{1} = q^{-N}$$

$$a_{2}a_{2}^{+} - q^{-1}a_{2}^{+}a_{2} = q^{+N}$$
(6.8)

and

$$a_{1}a_{1}^{+} - q^{-1}a_{1}^{+}a_{1} = q^{2J^{0}}$$

$$a_{2}a_{2}^{+} - qa_{2}^{+}a_{2} = q^{2J^{0}}.$$
(6.9)

The generators J^{\pm} and J^{0} can be represented as

$$J^{+} = q^{-J^{0}+1/2} a_{1}^{+} a_{2}$$

$$J^{-} = q^{-J^{0}-1/2} a_{2}^{+} a_{1}$$

$$2J^{0} = N_{1} - N_{2}$$

$$[J^{+}, J^{-}] = [2J^{0}]_{q} = [N_{1} - N_{2}]_{q}$$

$$[N, J^{\pm}] = [N, J^{0}] = 0.$$
(6.10)

We point out that the oscillator operators a_i and a_i^+ are covariant since the corresponding tensors $|e_{\{i_1,\ldots,i_k\}}\rangle$, equation (3.4), are covariant and irreducible by construction.

We note that the covariant q-Bose operators a, a^+ (6.1) are the same as in [6], where they were constructed using the Wigner $D^{(j)}$ -functions. A different set of covariant operators was constructed in [7]. Other constructions [11] are non-covariant in the sense that operators do not transform as $SU(2)_q$ doublet. In the non-covariant approach one has to solve an additional problem of constructing covariant, irreducible tensor operators [12].

The definition of the irreducible tensor operators of $SU(2)_q$ is

$$(J^{\pm}T_{km} - q^{-m}T_{km}J^{\pm})q^{-J^{0}} = \sqrt{[k \pm m]_{q}[k \pm m + 1]_{q}}T_{km \pm 1}$$

$$[J^{0}, T_{km}] = mT_{km}$$

$$(6.11)$$

$$|jm\rangle = T_{im}|0, 0\rangle_{F}.$$

According to equations (6.1)-(6.3) we define a unit tensor operator as

$$T_{jm} = q^{\frac{1}{2}n_1n_2} \frac{(a_1^+)^{n_1}(a_2^+)^{n_2}}{\sqrt{[n_1]_q ! [n_2]_q !}}$$
(6.12)

which is covariant and irreducible by construction and satisfies the requirements (6.11) automatically. Note that $(T_{km})^+$ transforms as contravariant tensor. One can define the tensor

$$V_{k\mu} = (-1)^{k-\mu} q^{\mu} T^{+}_{k-\mu} \tag{6.13}$$

which transforms as covariant, irreducible tensor. In tensor notation we have

$$V_{\{i_1\dots,i_k\}}^+ = \varepsilon_{i_1j_1}\dots \varepsilon_{i_kj_k} T_{\{j_1\dots,j_k\}} = (-1)^{n_2} q^{\frac{1}{2}(n_1-n_2)} T_{k-\mu}.$$
(6.14)

For completeness, we present relations between the Biedenharn operators b_i , b_i^+ [11], t_i , t_i^+ [7] and a_i , a_i^+ of the present paper:

$$b_{1} = q^{-N_{2} - \frac{1}{2}N_{1}} t_{1} = q^{\frac{1}{2}N_{2}} a_{1}$$

$$b_{2} = q^{-\frac{1}{2}N_{2}} t_{2} = q^{-\frac{1}{2}N_{1}} a_{2}$$

$$b_{1}^{+} = t_{1}^{+} q^{-N_{2} - \frac{1}{2}N_{1}} = a_{1}^{+} q^{\frac{1}{2}N_{2}}$$

$$b_{2}^{+} = t_{2}^{+} q^{-\frac{1}{2}N_{2}} = a_{2}^{+} q^{-\frac{1}{2}N_{1}}.$$
(6.15)

We point out that the general covariant oscillators (e.g. t_i , t_i^+ and a_i , a_i^+) are characterized by the anionic type q-commutation relation (6.1). Actually, equation (6.1) is a consequence of underlying braid group symmetry and can be also obtained from the $SU(2)_q \tilde{R}$ -matrix [7].

Finally, we give the Borel-Weil realization

$$a_i^+ \equiv x_i \qquad a_i \equiv D_i \qquad i = 1, 2$$
 (6.16)

. . .

$$x_{2}x_{1} = qx_{1}x_{2} \qquad D_{2}D_{1} = q^{-1}D_{1}D_{2}$$

$$D_{1}x_{1} = qx_{1}D_{1} + q^{-N} \qquad D_{2}X_{2} = q^{-1}x_{2}D_{2} + q^{N}$$

$$[D_{i}, x_{j}] = 0 \qquad i \neq j$$
(6.17)

or

$$D_{1}x_{1} = q^{-1}x_{1}D_{1} + q^{2J^{0}}$$

$$D_{2}x_{2} = qx_{2}D_{2} + q^{2J^{0}}$$
(6.18)

where

$$N_i = x_i \partial_i$$

$$\partial_i = \partial/\partial x_i.$$
(6.19)

It follows that

$$D_{i}x_{i}^{n} = [n]_{q}x_{i}^{n-1}$$

$$D_{1} = \frac{1}{x_{1}}[x_{1}\partial_{1}]_{q}q^{-x_{2}\partial_{2}}$$

$$D_{2} = \frac{1}{x_{2}}[x_{2}\partial_{2}]_{q}q^{x_{1}\partial_{1}}.$$
(6.20)

Acknowledgments

This work was supported by the joint Croatian-American contract NSF JF 999 and the Scientific Fund of Republic of Croatia.

Appendix

We demonstrate usefulness of the equation (4.7) for practical calculations. Using equations (4.5) and (4.11) we write

$$\chi(a, b) = \chi(a) + \chi(b) + n_2(a)n_1(b)$$

$$\chi(c, d) = \chi(c) + \chi(d) + n_2(c)n_1(d)$$

$$\chi(a, d) = \chi(a) + \chi(d) + n_2(a)n_1(d)$$

$$\chi(b) = \chi(c)$$

$$(\varepsilon_{(b,c)})_n = (-1)^{n_2(b)}q^{\frac{1}{2}(n_1(b) - n_2(b))}$$

(A.1)

where

 $n = 2j = j_1 + j_2 - J$ $n_1(b) = n_2(c) = j + m$ $n_2(b) = n_1(c) = j - m$ $n_1(a) = j_1 - j + m_1 - m$ $n_2(a) = j_1 - j - m_1 + m$ $n_1(d) = j_2 - j + m_2 + m$ $n_2(d) = j_2 - j - m_2 - m.$

(A.2)

After inserting equation (3.6) into equation (4.7), we immediately obtain the final result, equation (4.12):

$$N \frac{q^{-\frac{1}{2}(M_{1}+M_{2}+M_{j})}}{(f_{1}f_{2}f_{j})^{1/2}} \sum_{n_{1}(b)=0}^{2j} \sum_{perm (a) perm (b) perm (d)} \sum_{perm (d)} \sum_{q^{n_{2}(a)n_{1}(b)+n_{1}(b)n_{1}(d)+n_{2}(a)n_{1}(d)} q^{2\chi(a)+2\chi(b)+2\chi(d)} (\varepsilon_{(b,c)})_{2j}$$

$$= N \frac{q^{-\frac{1}{2}(M_{1}+M_{2}+M_{j})}}{\sqrt{f_{1}f_{2}f_{j}}} \sum_{m=-j}^{+j} q^{n_{2}(a)n_{1}(b)+n_{1}(b)n_{1}(d)+n_{2}(a)n_{1}(d)}$$

$$\times f_{a}f_{b}f_{d}q^{n_{1}(a)n_{2}(a)+n_{1}(b)n_{2}(b)+n_{1}(d)n_{2}(d)} (\varepsilon_{(b,c)})_{2j}$$

$$= N \sum_{m=-j}^{+j} (-1)^{j-m} q^{j_{1}m_{2}-j_{2}m_{1}} q^{m(2J+2j+1)} \frac{f_{a}f_{b}f_{d}}{\sqrt{f_{1}f_{2}f_{j}}}.$$
(A.3)

We extend this simple calculation of the $SU(2)_q C-G$ coefficients to the $SU(N)_q$ quantum groups in the forthcoming paper.

References

- Drinfeld V G 1986 Quantum groups, ICM Proceedings, Berkely, p 978 Jimbo M 1986 Lett. Mat. Phys. 11 247 Kirillov A N and Reshetikhin N Yu 1989 Advanced Series in Mathematical Physics vol 7 ed V G Kac (Singapore; World Scientific) p 285
 Alvarez Gaume L, Gomez C and Sierra G 1990 Nucl. Phys. B 330 347
- [2] Alvarez Gaume L, Gomez C and Sterra G 1990 Nucl. Phys. B 330 347
 Pasquier V and Saleur H 1990 Nucl. Phys. B 330 523
 Bonatsos D, Faessler A, Raychev P P, Roussev R P and Smirnov Yu F 1992 J. Phys. A: Math. Gen. 25 3275
 Chang Z 1992 J. Phys. A: Math. Gen. 25 L781
- [3] Schlieker M and Scholl M 1990 Z. Phys. C 47 625 Song X C 1992 J. Phys. A: Math. Gen. 25 2929
- [4] Nomura M 1991 J. Phys. Soc. Japan 60 789
- [5] Ruegg H 1990 J. Math. Phys. 31 1085
- [6] Nomura M 1991 J. Phys. Soc. Japan 60 3260
- [7] Hadjiivanov L K, Paunov R R and Todorov I T 1992 J. Math. Phys. 33 1379
- [8] Groza V A, Kachurik I I and Klimyk A U 1990 J. Math. Phys. 31 2769
 Nomura M 1990 J. Phys. Soc. Japan 59 439
- [9] Meljanac S and Mileković M in preparation
- [10] Burdik Ć and Hlavaty L 1991 J. Phys. A: Math. Gen. 24 L165
- Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
 Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581
 Song X C 1990 J. Phys. A: Math. Gen. 23 L1155
- [12] Pan F 1991 J. Phys. A: Math. Gen. 24 L803
 Rittenberg V and Scheunert M 1992 J. Math. Phys. 33 436