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Abstract. A covariant-tensor method for SU(2),, is described. This tensor method is used 
to calculate q-deformed Clebsch-Gordan coefficients. The connection with covariant oscil- 
lators and irreducible tensor operators is established. This approach can be extended to 
other quantum groups. 

Prirodoslovno-Matematifki fakultet, Department of Theoretical Physics, BijeniEka c. 32, 

1. Introduction 

In recent years there has been considerable interest in q-deformations of Lie algebras 
(quantum groups) [l] and their applications in physics [2]. The main go:d of these 
applications is a generalization of the concept of symmetry. The properties of quantum 
gr~oups are similar to those of classical Lie groups with q not being a roclt of unity. 
However, it is still not clear to what extent the familiar tensor methods, used in the 
representation theory of Lie algebras, are applicable to the case of q-deformations. 

Different types of tensor calculus for SU(2), were proposed and applied in referen- 
ces [3-71.  howe ever, no simple covariant-tensor calculus for SU(n), was presented. In 
this paper we propose a simple covariant-tensor method for SU(2), which can be 
extended to the general SU(n), .  Details for SU(n), and especially for SU(3), will be 
published separately. 

The plan of the paper is the following. In section 2 we recall the basics of the 
SU(2), algebra, its fundamental representation and invariants. In section 3 we. construct 
the general SU(2),-covariant tensors and invariants. In section 4 we apply this tensor 
method to calculate q-deformed Clebsch-Gordan coefficients ~ and in section '5 we 
demonstrate their symmetries. We point out that this method is simpler than that used 
in previous calculations [5,8] and can be generalized to other quantum groups. Finally, 
 in^ section 6 we connect covariant tensors with covariant q-oscillators and construct 
unit irreducible tensor operators. 

2. SU(Z),-algebra, its fundamental representation and invariants 

Let us recall that three generators of SU(2), obey the following commutation relations 
[I] (we take q real) 

[Jo, J*] = *J' 

(2.1) 
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4596 S Meljanac and M Milekouic 

The coproduct A; SU(2),+SU(2),OSU(2), is defined as 

A(J*) = J*@q'"+q-'"@J* 

A(JO) = J O O  1 + 10 J O .  

Let V2 be a two-dimensional space spanned by the basis lea), a = 1,2, and Iu) = 
Z, 1eJu.E V,. The SU(2), generators J k  ( k = * , O )  act as 

JkIe.)=C ( J k ) k l e b )  

Jk lu)=  c (J"b.leh)U. 

b 

a b  

= E  h)(Jkv), 
b 

=Clebbb. (2.3) 
b 

In the fundamental representation of SU(2), the generator J's are ordinary 2 x 2 Pauli 
matrices. 

Let (V2)* be a dual space with the basis (e.l=(le.))+ and (ul=(Iu))'=Z.,u$(e,l. 
The dual basis is orthonormal, i.e. (e.leh)= 8.b. We note that the components of the 
vector /U), U,, (or U$ of ( V I )  are not defined as real or complex numbers: Their algebraic 
properties follow from SU(2),-invariance requirements. Here we identify (for the spin 
j = f )  

and the matrix elements of the generators J k  are 

(ealJole.)= ma 
(e,lJ+le2) = (e,jJ-le,) = 1. 

(2.4) 

(2.5) 

We define a scalar product as (ulu)=L.u$u. and the norm as ( u l u ) = X . . u ~ u . .  This 
scalar product (and the norm) are not SU(2)q-invariant. Instead, the quantity 

(ulq-''l U) (2.6) 
is invariant under the action of the coproduct (2.2) in the following sense: 

A(J*)( uI q-Jolu) = (J'( ul)lu)+ (q-'"( ul)J*q-'"/ u) 

= -(ulJ'lu)+(u~J'~u) =o 

= -(vlJOq-'"l U) -!- (ulJOq-JOl U) 

A(J0)(ulq-"1 U) = (Jo( u/)q-'ol U) +( ulJ"q-'"lu) 

= 0. 

The quadratic forms 

1 u:q-Jou, = E  u:q-m"u. 
(I 12 
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are SU(2),-invariant. Note that the first quadratic form (2.8) can be written as 

If we demand &, uzq-'"w, = E. u.qmwz, it follows that uTul = qulu:' and u f u 2 =  

In addition to the (ulq-'o(u)-invariant form we consider another form 

(ulq-'"u). 

q-'u2uT. 

&.ble.)leb) (2.10) 
with 

(2.11) 

(E&)q=  (Eba)q  =-(&ab)q-'  

where T = 2 and 3 = 1. 

that U. and ub do not commute. Instead, they q-commute, i.e. u2u1 = qu,uz. 
Note that the q-antisymmetric combination u.ub&.b is SU(2),-invariant, showing 

3. General SU(Z),-tensors and invariants 

Let us consider the tensor-product space ( V2)@' = V 2 0  . . . 0 V2 with the basis 
le,,)@. ..Ole,,), a,, . . . ak = 1,2. Then we write an element of the tensor space ( V2)@k 
as tensor IT) of the form 

iT)=le.,) . . . I  e.,)T"i ... To& 
- -le,, . . . e,,)T"'-"*. (3.1) 

We have the following proposition: 

The tensor IT) transforms under the SU(2), algebra as an irreducible representation 
of spin j = k/2 if and only if T2T' = qT' T2: 

Let us assume r2T1 = qrl T ~ .  Thin 
l ~ = ~ / 2 ) = l e a , . . .  e ) T"i-5 

+/ 

The vectors Ijm) span the space V',, of the irreducible representation with spin j .  
From T2T' = qT'T2 it follows that 

where : T :  means the normal order of indices (1s on the left of 2s), i.e. T".."22"'2 and 
index 1 (2) appears n ,  ( n 2 )  times, respectively. x is the number of inversions  with 
respect to the normal order. Hence 

(3.3) TO ,... (I* = q x ( * v a L ) . ~ a  ,... 
.~ 

Ijm) = le{u,...akd 
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where the curly bracket {a,. . . ar} denote the q-symmetrization. The summation runs 
over all the allowed permutations of the fixed set of indices (n, 1s and n2 2s) and 
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M = nln2 = ( j +  m ) ( j  - m) 

j = +(n, + nz) m = i ( n ,  - nz) 
(3.5) 

[VIq . .  
[ j + m ] , ! [ j - m ] , ! '  

The important relation is 

From equation (3.4) and the definition~of the coproduct A(J*) (2.2) we can reproduce 

A(J*) l jm}=d[ jFm],J j*  m +1], Ijm * 1) 

A(J'))ljm)= mljm). 
(3.7) 

From (3.2) and (3.4) we immediately obtain the relation between TI" and the com- 
ponents of Tal"% 

-_ ' q " ( " ~ - ~ " ~ ~ ( e ~ ~ . . . . , ~ .  
- V p  perm(.a, ... 'ii 1 

As a consequence of equations (3.4), (3.6) and (3.9) we obtain 

(3.9) 

(3.10) 

- - s,,,,. (3.11) 

The SU(2),-invariant quantity built up of the tensors (TI and I U) of spin j = k / 2  is 
I = ( T I ~ - J " I u ) = ( T ' . ' . . . " , ) * ~ - J " ~ " ~ O *  
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The second type of the SU(2),-invariant quantity built up of the tensors IT) and [U) 
of spin j = k/2 is 

(3.13) I!= Tay"' u b ,  ..Ak 
&.,b,&a2b2.. . 

with .eab given in (2.11). Of course, TnTbsOb = 0 if T" and Tb q-commute. 
Furthermore, using equation (3.3) we can also write 

(3.14) 

where S E &  is .a fixed permutation  of^ the indices aI...uk and ,y(s)= 
~ ( u ,  . . . ak) -,y(s(a,. . . uk)) is the number of inversions with respect to the ( a 1 . .  . U * )  

order. 

4. q-Clebsch-Gordao coefficients 

Here we present a new simple method for calculating the q-deformed Clebsch-Gordan 
(c-G) coefficients. It can be immediately extended and applied to SU(n), and other 
quantum groups. This method is a consequence of the previously described tensor 
method  and construction~of invariants. 

Our notation is 

(4.4) 

(4.5) 
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and equation (3.6) together with the abbreviations 

k = 2j1 1 = 2j2 j 3  = j l  +j2 m3 = ml+ m2 

The main observation is that any C-G coefficient (j lml j2mZlJM) can be written in 
the form (4.4). Namely, the C-G coe5cient Glml j2mz/ JM) is projection of  the state 
( j l m l l W z m z l  = ( e ( ~ , . . . = ~ J ~ ) ~ ( b ~ . . b ~ ~ l ~  frohi the tensor product space Gj,,+l@ v&+, to the 
state lJM)=lq. ,... [ ~ J ,  _.+, [...[lr,,,.b,l.~.lbnl--.bU 1) (with the appropriate symmetry of 2jl+2jz 
indices) in the space &,+, c &,,+,@ gj2+l. Here, the square brackets [. . .] denote 
q-antisymmetrization and n = 2j= jl+jz - J. Furthermore, the state 
~ ~ ~ , t ~ ~ . , . t ~ ~ , b ~ , , . , ~ , b , l ) m & ~ ~ ~ ~ .  . . E.,~, transforms as a singlet, i.e. it is invariant under the 
coproduct action in the tensor product space V. 0 V.. Hence, using the equation (3.4), 
we can write 

(Am1 jlmzl J M ) ,  

(4.7) 

where the length of b (e) is n = j ,  +j2- J, (qqcJn = E ~ , ~ ~  . . . zb,,<,, and 

[ j l  + j z -  51, ! [ j l  - j ,  +J] ,  ![-jl + j 2 + J ] ,  ![ j l  +jz+ J +  11, ! (4.8) 
N = (  

[2jll,  ![2jzIq W J +  11, ! 

Expression (4.7) is efficient for practical calculation of C-G coefficients (see appendix). 
We also present a simple derivation of the standard expression for q-c-c coefficients 

Using the decomposition 
~ 5 1 .  

+j  

m=-j 
(j lmll= Z ( j l m l l j l - j  ml -m jm);( j1- j  ml-ml(jml 

+j  

m--j 
IJM)= 

we immediately write 

( j l - j  m l - m  j z - j  mz+mlJM),lj,-j ml-m)ljz-j  mz+m) 

(4.9) 

(4.10) 
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where N is the n o m  depending on j , ,  j ,  and J. Three of the four CG coefficients 
appearing on the right-hand side have the simple form (4.4). The fourth coefficient 
( jm  j - m 100) also has a simple form. Namely, for n = 2j we have 

(4.11) 

The denominator [2j+ 1]"2 comes from the orthonormality condition. 
  fin ally, inserting equations (4.4) and (4.11) into equation (4.10) we find 

( j I m l  ~ ~ ~ Z I J M ) , ,  

( , 2 j  ) ( 2il-2j ) ( Zj2-2j ) 
J( 2~ ) (~~~ zj ,  ) ( 2 ~ : ~ )  

= -  . (4.12) m(u+2,+l) i + m  , j l- j+m,-m j2-j+m2+m ~, .~ x 4  

. .. 
J + M  j l+ml j2+m, 

with j l+jz-j=J+j.  This result agrees with the result.found by Ruegg [ 5 ]  if the 
normalization factor N is taken as 

(4.13) [2jllq ![2j214![2J+11q![jl+j2-J+llY 
[ j ,  + j 2  -51, ! [ j ,  -j2+ J ] ,  ![-j l  + j,+ J],, ! [ j ,  + j 2+J+ 13, ! 

N = (  

We point out that our tensor method is simple and can be easily applied to SU(n), 
for n a 3. We also mention that it can be applied to multiparameter quantum groups. 
For example, it can be shown [9] that c-G coefficients for the two-parameter SU(2),,,, 
[ lo]  depend effectively on one parameter only. 

5. Symmetry relations 

For completeness we rederive the known symmetry relations for 9-c-0 coefficients and 
9-3 - j  symbols. From equation (4.4) immediately follow symmetry relations 

Furthermore, from equation (4.11) we have 
( j -  m j m  loo), = (-1)2j(jm j - m /oo),-~ 
( jm 001 jm),  = 1. 
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The symmetry relations (5.1)-(5.3) are suficient to derive the symmetries of the general 
C-G coefficients. From equation (4.10) we obtain 

S Meljanac and M Milekovic 

GI - m, j 2 -  m21 J - M ) ,  =( jZmz I JM) ,  

=(-1)A+j2-J ( A m l  j 2 m  JM),-i (5.4) 
and 

( j l - m l  JMlj2m2)~=(-1)'-j~Cm'q-m' dL2J+11 r2j2+11q(j lml  j2m21JM),. (5.5) 
4 

(One can deduce this directly from (4.7).) 
We can define the q-deformed 3 - j  symbol as 

where the additional factor q:'"'-"~' comes from the requirement that symmetry 
relations for the (3 - j ) ,  coefficients should not contain explicit q-factors: 

and that the ( 3 - j ) 4  coefficients are invariant under cyclic permutations. 
Note that the SU(2), invariant, built up of the three states l j lml) ,  ljzm2) and 

lj&, is 

Now we identify 

= ~ 1 2 3 ( & ~ h . ~ ) ) K , ( & l d . ~ l ) X ~ ( e ~ ~ . , l ) X ~  (5.9) 
where, for example, (q6,Ja = E ~ , ' ,  .. . zhxei with 

kl  = j l  + j2  -j3 k 2 -  ~ , + j : + . k  k3 = j l  - j2+j3 (5.10) 
and N,= is the normalization factor fully symmetric in indices (123). Equation (5.9) 
represents the connection with the tensor notation used (see (5 .7) ) .  

6. Covariant q-oscillators and irreducible tensor operators 

Let us define the q-bosonic operators ai and a' (i = 1,2) such that le;) = aTl0, O), and 
(e,[ = ,(O, Ola,, where 10, 0) ,  denotes the (Fock) vacuum state invariant under SU(2),. 
Hence, a: and a: are covariant operators transforming as an SU(2), doublet. Therefore, 
analogously as in equation (3.2), they q-commute 

a:a: = qa:a:. (6.1) 
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Furthermore, we define the projector Plj=k/21 from the tensor space ( V2)@’ to the.totally 
q-symmetric space carrying an irreducible representation of spin j = kj2 

We find from equation (3.4) that 

j=i(n,+n2) . m=$(n, -n2) .  

We define the number operators Ni and N as 

Niljm)=N;lnl ,n3=n;ln, ,  n2)  

N =  N I +  N2 

IN,, a;] = 8,a: 

[ N, a:] = a t  

IN, Nil = 0 [ N I ,  Nz1 = 0 

[N;,  aj] = -8-a v i  

[ N, a,] = -ai. 

The action of a?. and a, on the basis vectors,ljm) is 

a:l j m )  = q + z m  I j+i, m +$) 

a:ljm)= q 4 “ a m  I j+S, m -3 
alljm)= q - h * a  [ j - ; ,  m -9 
a 2 ~ j m ) = q ~ “ ~ ~ ~ j - + ,  m + 3 .  

The commutation relations between ai and aj’ follow immediately: 

ala: = qa:a: 

ala; = a:a2 

a2a, = q-la,a2 

ala:  = a la ,  
and 

ala:= q-”[N, + I], 
ala: = q C N f  N2+ 11,  

H=a:a ,+a:a2= [NI , .  

a:a, = q-*:[N,], 

a l a 2 =  q”fN2] ,  

Then 

(6.7) 

and 
a,a:-q-’a;a,  = q  21“ 

2JlL a2a: - qala,  = q . 
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The generators J* and P can be represented as 

S Meljanac and M Milekovic 

J + = ~ - J ~ + I / Z  + 

J- = 4-1° -1 /2a la ,  

a, a2 

2Jo=Nl-N2 (6.10) 

[ J + ,  J-]=[2Jo],=[Nl-N& 

[ N, J*] = [ N, Jo] = 0. 

We point out that the oscillator operators ai and a t  are covariant since the correspond- 
ing tensors l & ~ j , . . , i h ~ ) ,  equation (3.4), are covariant and irreducible by construction. 

We note that the covariant q-Bose operators a, a+ (6.1) are the same as in [6], 
where they were constructed using the Wigner Do'-functions. A different set of 
covariant operators was constructed in [7 ] .  Other constructions [ll] are non-covariant 
in the sense that operators do not transform as SU(2), doublet. In the non-covariant 
approach one has to solve an additional problem of constructing covariant, irreducible 
tensor operators [ 121. 

The definition of the irreducible tensor operators of SU(2), is 

(J* Tkm - q-"Td*)q-'O= J[ k r  m]q[ k f m + 114 Tkmrl 

[ J o ,  Tkml = mTkm (6.11) 

Ijm) = Tm10. Ob. 
According to equations (6.1)-(6.3) we define a unit tensor operator as 

(6.12) 

which is covariant and irreducible by construction and satisfies the requirements (6.11) 
automatically. Note that (Tkm)+ transforms as contravariant tensor. One can define 
the tensor 

(6.13) vk*=(-l)k-* 4 * Tk-rr + 

which transforms as covariant, irreducible tensor. In tensor notation we have 

v;; ,_.. i* J = E,, j, . . . qj ,,.. jA, = (-l)n~qh-~Tk-*. 
' 

(6.14) 

For completeness, we present relations between the Biedenbam operators bi, b: 
[ll], ti, t: [7]  and a,, a: of the present paper: 

b 1-4 - - N 2 - k N z f l  = qlN>al 

(6.15) 

b+ - t+ - 4 4  = a;q-/N,, 
2 -  2 4  

We point out that the general covariant oscillators (e.g. ti, t t  and ai, a;)  are character- 
ized by the anionic type q-commutation relation (6.1). Actually, equation (6.1) is a 
consequence of underlying braid group symmetry and can be also obtained from the 
SU(2), R-matrix [7]. 

Finally, we give the Borel-Weil realization 

a:-xj a,=Di i = l , 2  (6.16) 
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which is covariant automatically. The commutation relations are 

XZXI = qx1x2 
Dlx l  = qx,D, + qbN 
[Di ,  nj] = 0 i # j  

D,x ,  = q - ' ~ , D , + q ~ ' ~  
D2x2 = qx2D2+ q2'" 

D2D1 = q-' D ,  D2 
D2X2= q- 'x2D2+qN 

(6.17) 

or 

where 
N, = x,a, 
a, = a/axi. 

It follows that 
Djxy = [ n 1 g y - l  

1 

XI 
D,  =- [X,allsq-x'J' 

(6.18) 

(6.19) 

(6.20) 
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Appendix 

We demonstrate usefulness of the equation (4.7) for practical calculations. Using 
equations (4.5) and (4.11) we write 

~ ( a ,  b ) = ~ ( a ) + ~ ( b ) + n , ( a ) n i ( b )  
X(C, d )  = x ( c ) + X ( d ) +  ndc)ni(d) 
~ ( 0 ,  d )  = X ( a ) + X ( d ) +  n,(a)ni(d) (A.1) 
A b )  = x ( c )  

"Ah1 h i n , i h ) - n ~ i h l l  (&(h.c))n=(-l) 4 
where 

n = 2j = j ,  + j ,  - J 
n , ( b )  = n2(c) = j +  m 
n2( b )  = n,(c)  = j - m 
n , ( a ) = j ,  - j + m , - m  

n2(a) = j ,  - j  - m, + m  
n , ( d )  = j 2 - j + m 2 +  m 
n2(d )  = j 2  - j - m2- m. 
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After inserting equation (3.6) into equation (4.7), we immediately obtain the final 
result, equation (4.12): 

S Meljanac and M Milekouic 

(A.31 

We extend this simple calculation ofthe SU(2), C-G coefficients to the SU(N), quantum 
groups in the forthcoming paper. 
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